Public Response to Installation of Building Integrated Photovoltaic System (BIPV) to Residential Buildings in Wuhan, China

Author(s):  
Wei Yang ◽  
Chun-QIng Li ◽  
Cagil Ozansoy
2019 ◽  
Vol 41 (4) ◽  
pp. 492-506 ◽  
Author(s):  
P Ramanan ◽  
K Kalidasa Murugavel ◽  
A Karthick ◽  
K Sudhakar

The integration of photovoltaic modules into the building structure is a challenging task with respect to power generation of PV module and the effect of incident solar radiation. The performance of building integrated photovoltaic (BIPV) modules varies depending upon the orientation and azimuth angle of the building. In this work, the year-round performance and economic feasibility analysis of grid-connected building-integrated photovoltaic (GBIPV) modules is reported for the hot and humid climatic regional condition at Kovilpatti (9°10′0′′N, 77°52′0′′E), Tamil Nadu, India. The appropriate mounting structures are provided, to experimentally simulate the performance of GBIPV modules at various orientations and inclination angles (0° to 90°). The result indicated that the optimum orientation for installation of BIPV modules in the façade and walls is found to be east while that for a pitched roof south orientation is recommended. The overall average annual performance ratio, capacity utilisation factor, array capture loss and system losses are found to be 0.83, 23%, 0.07 (h/day), and 0.17 (h/day), respectively. In addition, the economic feasibility of grid connected PV system for residential buildings in Tamil Nadu, India is analysed using HOMER by incorporating both a net metering process and electricity tariff. Practical application: Grid-connected building-integrated photovoltaic system has many benefits and barriers by being installed and integrated into the building structure. The application of GBIPV in building structures and its orientation of installation needs to be optimised before installing into buildings. This study will assist architects and wider community to design buildings facades and roofs with GBIPV system which are more aesthetic and account for noise protection and thermal insulation in the region of equatorial climate zones. By adding as shading devices, they can reduce the need for artificial lighting, and moderate heating or cooling load of the buildings.


2020 ◽  
Vol 6 ◽  
pp. 10-19 ◽  
Author(s):  
Didier Sierra ◽  
Andrés Julián Aristizábal ◽  
Jesús Antonio Hernández ◽  
Daniel Ospina

Author(s):  
VS Chandrika ◽  
M Mohamed Thalib ◽  
Alagar Karthick ◽  
Ravishankar Sathyamurthy ◽  
A Muthu Manokar ◽  
...  

Photovoltaic (PV) system efficiency depends on the geographical location and the orientation of the building. Until installing the building structures, the integration of the PV module must be evaluated with ventilation and without ventilation effects. This work optimises the performance of the 250 kWp grid-connected photovoltaic (GPV) for community buildings in the southern part of India. This simulation is carried out to evaluate the system efficiency of the GPV system under various ventilation conditions, such as free-standing PV (FSPV), building integrated photovoltaic ventilated (BIPV_V) and Building Integrated Photovoltaic without ventilation (BIPV). The PVsyst simulation tool is used to simulate and optimise the performance of the system with FSPV, BIPV and BIPV_V for the region of Chennai (13.2789° N, 80.2623° E), Tamilnadu, India. An annual system energy production is 446 MWh, 409 MWh and 428 MWh of FSPV, BIPV and BIPV_V system respectively. while electrical efficiency for the FSPV, BIPV_V, BIPV system is 15.45%. 15.25% and 14.75% respectively. Practical application: Integrating the grid connected photovoltaic system on the building reduces the energy consumption in the building. The integration of the PV on the roof or semi integrated on the roof is need to be investigated before installing on the buildings. The need for installation of the BIPV with ventilation is explored. This study will assist architects and wider community to design buildings roofs with GPV system which are more aesthetic and account for noise protection and thermal insulation in the region of equatorial climate zones.


2021 ◽  
Vol 19 ◽  
pp. 205-210
Author(s):  
Milan Belik ◽  

This project focuses on optimisation of energy accumulation for various types of distributed renewable energy sources. The main goal is to prepare charging – discharging strategy depending on actual power consumption and prediction of consumption and production of utilised renewable energy sources for future period. The simulation is based on real long term data measured on photovoltaic system, wind power station and meteo station between 2004 – 2021. The data from meteo station serve as the input for the simulation and prediction of the future production while the data from PV system and wind turbine are used either as actual production or as a verification of the predicted values. Various parameters are used for trimming of the optimisation process. Influence of the charging strategy, discharging strategy, values and shape of the demand from the grid and prices is described on typical examples of the simulations. The main goal is to prepare and verify the system in real conditions with real load chart and real consumption defined by the model building with integrated renewable energy sources. The system can be later used in general installations on commercial or residential buildings.


2016 ◽  
Vol 91 ◽  
pp. 887-896 ◽  
Author(s):  
Roberta Zarcone ◽  
Maurizio Brocato ◽  
Paolo Bernardoni ◽  
Donato Vincenzi

Sign in / Sign up

Export Citation Format

Share Document