scholarly journals Optimisation of Energy Accumulation for Renewable Energy Sources

2021 ◽  
Vol 19 ◽  
pp. 205-210
Author(s):  
Milan Belik ◽  

This project focuses on optimisation of energy accumulation for various types of distributed renewable energy sources. The main goal is to prepare charging – discharging strategy depending on actual power consumption and prediction of consumption and production of utilised renewable energy sources for future period. The simulation is based on real long term data measured on photovoltaic system, wind power station and meteo station between 2004 – 2021. The data from meteo station serve as the input for the simulation and prediction of the future production while the data from PV system and wind turbine are used either as actual production or as a verification of the predicted values. Various parameters are used for trimming of the optimisation process. Influence of the charging strategy, discharging strategy, values and shape of the demand from the grid and prices is described on typical examples of the simulations. The main goal is to prepare and verify the system in real conditions with real load chart and real consumption defined by the model building with integrated renewable energy sources. The system can be later used in general installations on commercial or residential buildings.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2151
Author(s):  
Feras Alasali ◽  
Husam Foudeh ◽  
Esraa Mousa Ali ◽  
Khaled Nusair ◽  
William Holderbaum

More and more households are using renewable energy sources, and this will continue as the world moves towards a clean energy future and new patterns in demands for electricity. This creates significant novel challenges for Distribution Network Operators (DNOs) such as volatile net demand behavior and predicting Low Voltage (LV) demand. There is a lack of understanding of modern LV networks’ demand and renewable energy sources behavior. This article starts with an investigation into the unique characteristics of householder demand behavior in Jordan, connected to Photovoltaics (PV) systems. Previous studies have focused mostly on forecasting LV level demand without considering renewable energy sources, disaggregation demand and the weather conditions at the LV level. In this study, we provide detailed LV demand analysis and a variety of forecasting methods in terms of a probabilistic, new optimization learning algorithm called the Golden Ratio Optimization Method (GROM) for an Artificial Neural Network (ANN) model for rolling and point forecasting. Short-term forecasting models have been designed and developed to generate future scenarios for different disaggregation demand levels from households, small cities, net demands and PV system output. The results show that the volatile behavior of LV networks connected to the PV system creates substantial forecasting challenges. The mean absolute percentage error (MAPE) for the ANN-GROM model improved by 41.2% for household demand forecast compared to the traditional ANN model.


2020 ◽  
Vol 24 (1) ◽  
pp. 357-367
Author(s):  
Liva Asere ◽  
Andra Blumberga

AbstractThe energy efficiency – indoor air quality dilemma is well known and the main drawback to operate the mechanical ventilation is electricity costs as concluded from previous studies. Educational buildings are one of the places where future taxpayers spend a lot of time. This paper aims to study an alternative solution on how to reduce energy efficiency – indoor air quality dilemma in educational buildings by adopting systems that use renewable energy sources. A typical education building in Latvia is taken as a case study by changing it from a consumer to prosumer. This building type has a specific electricity usage profile that makes the choice of photovoltaics (PV) power quite challenging so the various power options have been analysed and used for an electricity solution. Also, the more decentralised preference is chosen – disconnect from a public heating provider and using a local system with a pellet boiler. Educational buildings using PV can reduce the electricity tariff, but the payback periods are still not very satisfactory without subsidies. The average electricity tariff per month varies between scenarios and the best one is for the scenario with 30 kW installed power. The educational building partly using 16 kW PV system reduces not only its bill for electricity but also reduces CO2 emissions by around 36 tons. The education buildings as energy prosumers using renewable energy sources are reducing GHG emissions by having high indoor air quality.


2018 ◽  
Vol 19 (12) ◽  
pp. 66-74
Author(s):  
Marcin Chrzan ◽  
Daniel Pietruszczak ◽  
Mirosław Wiktorowski

The paper presents issues related to renewable energy sources and their current use. Home photovoltaic installations RES and their types are discussed. It presents the benefits that a basic household can derive from it. Details of the photovoltaic system design in a monocular house are described.


2018 ◽  
Vol 7 (3.31) ◽  
pp. 30
Author(s):  
Muzeeb Khan Patan ◽  
P Udaya Bhanu ◽  
M D. Azahar Ahmed

Inverters have many Technological improvements in their maximum power handling capabilities by using renewable energy sources. Multilevel inverters give effective and efficient interface for renewable energy sources and perform Transformer-less operation and increase the power quantity and quality of voltage of the PV system. In this paper, the benefits of H-bridge inverters including the total harmonic distortions are discussed. This paper has primarily focused on Sinusoidal PWM and worked on the carrier based phase disposition techniques. The performances of modulation schemes are compared. Simulations were done using MATLAB Simulink for the given PWM techniques.  


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3406
Author(s):  
Sebastian Klaudiusz Tomczak ◽  
Anna Skowrońska-Szmer ◽  
Jan Jakub Szczygielski

In the interests of the environment, many countries set limits on the use of non-renewable energy sources and promote renewable energy sources through policy and legislation. Consequently, the demand for components for renewable energy systems exhibits an upward trend. For this reason, managers, investors, and banks are interested in knowing whether investing in a business associated with the semiconductor and related device manufacturing sector, especially the photovoltaic (PV) systems manufacturers, is worthy of a penny. Using a sample for the period of 2015-2018, we apply a new approach to panel data, extending existing research using Classification Trees with the k-Nearest Neighbor and Altman model. Our aim is to analyze the financial conditions of enterprises to identify key indicators that distinguish companies producing PV system components (labeled “green, G”) from companies that do not manufacture PV components (“red, R”). Our results show that green companies can be distinguished from red companies at classification accuracies of 86% and 90% for CRT and CHAID algorithms in Classification Trees method and 93% for k-Nearest Neighbor method, respectively. Based on the Altman model and the analysis of crucial ratios, we also find that green businesses are characterized by lower financial performance although future ratio values may equal or exceed the values for the red companies if current upward trends are sustained. Therefore, investing in green companies presents a viable alternative.


2015 ◽  
Vol 5 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Petr Wolf

It is well known that the utilization of renewable energy sources is inevitable for a sustainable future. Besides the fact that other energy sources such as coal, gas or nuclear power have limited reserves the proper use of increasingly higher shares of renewable energy sources may lower negative impacts of traditional energy sources on the ecosystems. This is especially important in naturally protected areas located in remote Earth locations. Such areas are still almost untouched by mankind, e.g. Antarctica. The research activities in the area of renewable energy sources have increased rapidly within the last few decades. It is of a global interest to carry out the research in an ecologically sensitive way, i.e. balance the outputs and the effects of infrastructure on environment. In this paper, a project of installation of a photovoltaic system on the Czech Antarctic Station (Johann Gregor Mendel) on the James Ross Island is described and the first experience from the system run is reported. The contribution of this system to the overall energy production on this station shortly after commissioning of the system is presented as well. In discussion, a possible future development of the system is suggested.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ardasher Namazbay Yussupov ◽  
Akmaral Ardasherovna Yussupova

PurposeThe purpose of this article discusses the design of underground eco-houses using a dome structure of light construction while taking into account the historical experience of the development of the local population. This article considered the traditions of folk architecture and modern sophistication in the creation of energy-efficient eco-houses in foreign countries in the context of architecture and construction of affordable residential homes for the local population.Design/methodology/approachThe research presented in this paper was motivated by the need for developing agro-tourism facilities in hard-to-reach areas of the Silk Road in Southern Kazakhstan causes the construction of eco-houses built using local construction materials. Since ancient times in Southern Kazakhstan and during seasonal migrations in yurts of light construction, people have lived in mud-brick houses deep in the ground. Along with architectural and artistic solutions in building construction, great importance was attached to saving material resources, labour costs and achieving heat stability of residential buildings.FindingsIn the architectural and planning solution of the eco¬-house, progressive directions of construction of agrotechnical structures using renewable energy sources are adopted. Particular importance was given to the choice of the construction site on an elevated area nearby historical monuments and a favourable season for the construction of eco-houses with considering the natural and climatic characteristics of rural areas of Southern Kazakhstan.Research limitations/implicationsThis paper discussed the issues of insulation, ventilation and improving the eco-house microclimate comfort using local building materials. Improving the architectural and artistic expressiveness of the eco-house in terms of the tradition of folk architecture was also explicitly discussed in this paper.Practical implicationsTables with the justification of expediency of construction of economical eco-houses in natural and climatic conditions of Kazakhstan and Central Asia are provided. The results help to improve the energy efficiency of eco-houses in Kazakhstan by using renewable energy sources.Social implicationsSocial benefits are associated with the use of local raw materials. Eco-houses built from traditional building materials can become accessible to a wide range of people and stimulate the development of small businesses. This may be associated with the construction of eco-houses to serve visiting tourists in remote picturesque oases, as well as the manufacture of dome structures, felt products and the preparation of reed panels and so on.Originality/valueThe thermotechnical characteristics of the region's ground energy are given, which can significantly save the cost of heating the eco-house. Solutions for optimal insolation, ventilation of the eco-house are provided, taking into account the natural and climatic conditions of Southern Kazakhstan.


2021 ◽  
Vol 13 (24) ◽  
pp. 13934
Author(s):  
Hanan S. S. Ibrahim ◽  
Ahmed Z. Khan ◽  
Yehya Serag ◽  
Shady Attia

Retrofitting “nearly-zero energy” heritage buildings has always been controversial, due to the usual association of the “nearly-zero energy” target with high energy performance and the utilization of renewable energy sources in highly regarded cultural values of heritage buildings. This paper aims to evaluate the potential of turning heritage building stock into a “nearly-zero energy” in hot, dry climates, which has been addressed in only a few studies. Therefore, a four-phase integrated energy retrofitting methodology was proposed and applied to a sample of heritage residential building stock in Egypt along with microscale analysis on buildings. Three reference buildings were selected, representing the most dominant building typologies. The study combines field measurements and observations with energy simulations. In addition, simulation models were created and calibrated based on monitored data in the reference buildings. The results show that the application of hybrid passive and active non-energy generating scenarios significantly impacts energy use in the reference buildings, e.g., where 66.4% of annual electricity use can be saved. Moreover, the application of solar energy sources approximately covers the energy demand in the reference buildings, e.g., where an annual self-consumption of electricity up to 78% and surplus electricity up to 20.4% can be achieved by using photo-voltaic modules. Furthermore, annual natural gas of up to 66.8% can be saved by using two unglazed solar collectors. Lastly, achieving “nearly-zero energy” was possible for the presented case study area. The originality of this work lies in developing and applying an informed retrofitting (nearly-zero energy) guide to be used as a benchmark energy model for buildings that belong to an important historical era. The findings contribute to fill a gap in existing studies of integrating renewable energy sources to achieve “nearly-zero energy” in heritage buildings in hot climates.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012151
Author(s):  
Georgios Chantzis ◽  
Panagiota Antoniadou ◽  
Maria Symeonidou ◽  
Effrosyni Giama ◽  
Simeon Oxizidis ◽  
...  

Abstract The need to create and maintain a sustainable indoor environment is now more than ever compelling. Both the legislation framework concerning the energy performance of buildings, as determined in its evolution through the EU Directives 2010/31/EU, 2012/27/EU and 2018/844/EU, and the European strategic plans towards green buildings, denote the need of sustainability and comfort of indoor environment for the occupant. Moreover, the EU Directive 2018/2001 sets the renewable energy target of at least 32% for 2030, denoting that the high renewable energy sources penetration level leads to challenges in the design and control of power generation, transmission and distribution. Demand side management may be able to provide buildings with the energy flexibility needed, in order to utilize the intermittent production of Renewable Energy Sources in a much more efficient and cost-effective way. The flexibility potential of installed building systems is investigated, while considering the effects on the indoor environment conditions and the perceived comfort. The implemented Demand Response (DR) control strategy shifts loads by changing heating system set point temperatures, based on market clearing prices of the day ahead market. The results indicated a reduction in energy consumption and energy costs, while maintaining indoor environment quality at satisfactory levels.


Sign in / Sign up

Export Citation Format

Share Document