Performance assessment of free standing and building integrated grid connected photovoltaic system for southern part of India

Author(s):  
VS Chandrika ◽  
M Mohamed Thalib ◽  
Alagar Karthick ◽  
Ravishankar Sathyamurthy ◽  
A Muthu Manokar ◽  
...  

Photovoltaic (PV) system efficiency depends on the geographical location and the orientation of the building. Until installing the building structures, the integration of the PV module must be evaluated with ventilation and without ventilation effects. This work optimises the performance of the 250 kWp grid-connected photovoltaic (GPV) for community buildings in the southern part of India. This simulation is carried out to evaluate the system efficiency of the GPV system under various ventilation conditions, such as free-standing PV (FSPV), building integrated photovoltaic ventilated (BIPV_V) and Building Integrated Photovoltaic without ventilation (BIPV). The PVsyst simulation tool is used to simulate and optimise the performance of the system with FSPV, BIPV and BIPV_V for the region of Chennai (13.2789° N, 80.2623° E), Tamilnadu, India. An annual system energy production is 446 MWh, 409 MWh and 428 MWh of FSPV, BIPV and BIPV_V system respectively. while electrical efficiency for the FSPV, BIPV_V, BIPV system is 15.45%. 15.25% and 14.75% respectively. Practical application: Integrating the grid connected photovoltaic system on the building reduces the energy consumption in the building. The integration of the PV on the roof or semi integrated on the roof is need to be investigated before installing on the buildings. The need for installation of the BIPV with ventilation is explored. This study will assist architects and wider community to design buildings roofs with GPV system which are more aesthetic and account for noise protection and thermal insulation in the region of equatorial climate zones.

2019 ◽  
Vol 41 (4) ◽  
pp. 492-506 ◽  
Author(s):  
P Ramanan ◽  
K Kalidasa Murugavel ◽  
A Karthick ◽  
K Sudhakar

The integration of photovoltaic modules into the building structure is a challenging task with respect to power generation of PV module and the effect of incident solar radiation. The performance of building integrated photovoltaic (BIPV) modules varies depending upon the orientation and azimuth angle of the building. In this work, the year-round performance and economic feasibility analysis of grid-connected building-integrated photovoltaic (GBIPV) modules is reported for the hot and humid climatic regional condition at Kovilpatti (9°10′0′′N, 77°52′0′′E), Tamil Nadu, India. The appropriate mounting structures are provided, to experimentally simulate the performance of GBIPV modules at various orientations and inclination angles (0° to 90°). The result indicated that the optimum orientation for installation of BIPV modules in the façade and walls is found to be east while that for a pitched roof south orientation is recommended. The overall average annual performance ratio, capacity utilisation factor, array capture loss and system losses are found to be 0.83, 23%, 0.07 (h/day), and 0.17 (h/day), respectively. In addition, the economic feasibility of grid connected PV system for residential buildings in Tamil Nadu, India is analysed using HOMER by incorporating both a net metering process and electricity tariff. Practical application: Grid-connected building-integrated photovoltaic system has many benefits and barriers by being installed and integrated into the building structure. The application of GBIPV in building structures and its orientation of installation needs to be optimised before installing into buildings. This study will assist architects and wider community to design buildings facades and roofs with GBIPV system which are more aesthetic and account for noise protection and thermal insulation in the region of equatorial climate zones. By adding as shading devices, they can reduce the need for artificial lighting, and moderate heating or cooling load of the buildings.


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


2011 ◽  
Vol 141 ◽  
pp. 103-108
Author(s):  
Bao Jie Xu ◽  
Mao Wang

Effective monitoring of photovoltaic system can make the operation condition of the system easy to know, and can also provide powerful data support for the further research. General monitoring method is to confirm the state of photovoltaic system by monitor the inverter unit’s some parameters relevant. This paper focuses on the monitoring of PV module, in order to get more accurate data, and then improve the efficiency of the PV system. Achieve the purpose of monitoring by the wireless sensor network constructed by sensor nodes that is designed proper for the acquisition of solar modules’ parameters data relevant, the monitoring application software also has been completed. The results indicate that the monitoring system who achieves the design requirements and expectations well, also with the characteristics of cost saving and convenient to set up has promising prospects.


Author(s):  
K. Burhanudin ◽  
N.A. Kamarzaman ◽  
A.A.A. Samat ◽  
A.I. Tajudin ◽  
S.S. Ramli ◽  
...  

Power-Voltage (P-V) curve and Current-Voltage (I-V) curve determine the performance of the PV system. In this work, the arrangements of the PV module were reconstructed by adding the number of PV module in 3 strings configuration from 5 to 45. This method enhance the performance of the PV system as it able to show the characteristic of the P-V and I-V curve during partial shading and maximum irradiance despite higher number of PV panel. This study focuses on improving the PV array configuration and simulation speed of the PV panel. The simulation of small size PV array is possible, but the problem lies when the number of string and PV module used increases. New PV array configuration is flexible and easy to add string and increase the number of PV module. PV array configuration was modeled using MATLAB/SIMULINK software.


2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
Zeinab Abdallah M. Elhassan ◽  
Muhammad Fauzi Mohd Zain ◽  
Kamaruzzaman Sopian ◽  
A. A. Abass

This paper searches to find out of building integrated photovoltaic system designs in Khartoum. It discussed technical issues and designed an integrated of photovoltaic in domestic using, within an urban approach towards sustainability in energy. Photovoltaic systems can be used to develop the solar energy in almost all kinds of applications. Exploiting of solar energy for domestic use is one avenue where the energy produced from the sun is converted into electricity to power most if not all the appliances available at our homes and residences. Building a photovoltaic system is the process of designing, selecting, and calculating the ratings of the equipments employed in the system. This process depends on a range of factors such as geographical location, solar irradiation, and load requirements. I introduce the procedures utilize, in building and selecting the equipments of a grid-connected photovoltaic system based on the Watt-hour demand of 3.8 kw. As a case study, a residence in Khartoum with low-energy consumption is selected.


2021 ◽  
Vol 13 (4) ◽  
pp. 1845
Author(s):  
Mohamed Hssan Hassan Abdelhafez ◽  
Mabrouk Touahmia ◽  
Emad Noaime ◽  
Ghazy Abdullah Albaqawy ◽  
Khaled Elkhayat ◽  
...  

In recent years, most cities have faced great demand for electricity supply due to rapid population growth and industrialization. Supplying sufficient electrical energy, while reducing greenhouse gas emissions, is one of the major concerns of policymakers and scientists all over the world. In Saudi Arabia, local authorities are increasingly aware of the necessity of reducing the environmental impact of nonrenewable energy by exploring alternative sustainable energy sources and improving buildings’ energy efficiency. Recently, building-integrated photovoltaic (BIPV) technology has been regarded as a promising technology for generating instantaneous sustainable energy for buildings. To achieve a substantial contribution regarding zero energy buildings, solar energy should be widely used in residential buildings within the urban context. This paper examines how to achieve an appropriate model for integrating photovoltaics on the rooftop of residential buildings in Hail city to provide alternative energy sources. The estimated rooftop areas in Hail city, utilizable for PV application were calculated. Using PV*SOL simulation software, the performance ratio and the system efficiency, as well as the annual energy output in several tilt angles, were determined and presented. The amount of energy expected when using all effective roof area in the city was also calculated. The amount of CO2 emissions that could be reduced as a result of using a PV system was estimated. The results show a significant area of rooftop suitable for PV system in residential buildings in Hail city, which exceeds 9 million square meters. On the other hand, the performance ratio and the system efficiency are affected by the tilt angle of the PV module, where the efficiency increases with higher tilt angle, this is due to the PV module temperature, where, with the decrease in the PV module temperature its efficiency increases. The results indicate that the 30° tilt PV produced the highest amount of energy, whereas the 75° tilt PV records the smallest one although it achieves the best possible efficiency. There is a significant amount of energy produced from the use of all residential rooftops in Hail, and there is also a significant reduction in the amount of CO2 emissions. It is expected that this research would develop innovative building design strategies and specifications allowing for better climate and energy efficiency as well.


Author(s):  
Amina Mahmoud Shakir ◽  
Siba Monther Yousif ◽  
Anas Lateef Mahmood

Bifacial photovoltaic (PV) module can gain 30% more energy compared to monofacial if a suitable location were chosen. Iraq (a Middle East country) has a variable irradiation level according to its geographic coordinates, thus, the performance of PV systems differs. This paper an array (17 series, 13 parallel) was chosen to produce 100 kWp for an on-grid PV system. It investigates the PV system in three cities in Iraq (Mosul, Baghdad, and Basrah). Effect of albedo factor, high and pitch of the bifacial module on energy yield have been studied using PVsyst (software). It has been found that the effect is less for a pitch greater than 6 m. The energy gained from bifacial and monofacial PV system module in these cities shows that Mosul is the most suitable for installing both PV systems followed by Baghdad and lastly Basrah. However, in Basrah, the bifacial gain is 12% higher in the energy than monofacial as irradiation there is higher than the other locations, especially for elevation above 1.5 m. Moreover, the cost of bifacial array is 7.23% higher than monofacial, but this additional cost is acceptable since the bifacial gain is about 11.3% higher energy compared to the monofacial.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012003
Author(s):  
De-Kun Cao ◽  
Jia-Wei Zhang ◽  
Shaoran Wang ◽  
Gang Dong ◽  
Hongwei Ni ◽  
...  

Abstract Deterioration of electric properties will be generated by the accumulation of surface charge on photovoltaic backsheet in the insulating system of photovoltaic (PV) system. The phenomena of potential induced degradation (PID) could be verified in the insulating Polyimide (PI) backsheet of PV module. In the field of photovoltaic system, PI has been found a special insulating backsheet that work in a mild condition. If the dynamic behaviors of the charge in the insulating backsheet could be understand, unexpected flashover events will be avoided. Thus, the mechanism of surface charge decay of PI should be explored under steady condition. The effect of accumulation of surface charge was explored on PI dielectric under constant ambient temperatures in this paper. The present investigation will contribute greatly toward the early potential induced degradation phenomenon of PV system.


Vitality is seen as a prime administrator in the time of wealth and a vital figure budgetary headway. Obliged fossil resources and natural issues associated with them have underscored the necessity for new reasonable vitality supply choices that uses sustainable power sources. Among open developments for essentialness age from solar dependent sources, the photovoltaic system might give a gigantic pledge to develop a progressively feasible imperativeness structure. This paper presents accuracy of detecting DC faults in a photovoltaic (PV) framework based on Levenberg - Marquardt (LM) neural network. The result showed that this model based on LM neural network is effectual to grip doubts and nonlinearities of DC side faults in PV module without using mathematical model. All probable faults in DC side of PV system are obtained over 100 kW plant. It is discovered that the proposed framework has demonstrated its integrity for the pragmatic applications.


2020 ◽  
Vol 7 (10) ◽  
pp. 384-389
Author(s):  
Jawad Ahmad ◽  

Reliability and long term performance of photovoltaic (PV) system is of vital importance in switching from conventional sources to sustainable one. Design, study and analysis of key components in a photovoltaic power system starting from generation of power to withstands number of climatic stresses and uninterrupted power supply plays a key role. One of the key elements in photovoltaic system is photovoltaic module. Also power generated in photovoltaic system is dependent on a source of energy that changes in every instant and with the passage of time during its operation .Hence it is paramount to build a long lasting photovoltaic module and analyze characteristics of the PV module under various conditions. This paper presents an efficient PV module based on PV equivalent circuit model using MATLAB/Simulink, and compared the simulated model results with manufacturer’s specifications like peak current, peak voltage, open circuit voltage and short circuit current .Also the performance of the module under variation of series resistance, irradiation, and temperature are analyzed. Data from five different areas across KP are noted and the results were Simulated and compared with the rated data.


Sign in / Sign up

Export Citation Format

Share Document