A Comparative Study of Satellite Orbits as Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO)

Author(s):  
Sandeep Vishwakarma ◽  
Aradhana S. Chauhan ◽  
Shoeba Aasma

It is known facts that satellites are used to receive the signal at geostationary orbit by remaining stationary above a particular point on the Earth. The orbit that is chosen for a satellite depends upon its application. Those used for direct broadcast television use geostationary orbit. Many communication satellites similarly use geostationary orbit. Other satellite systems used for satellite phones use Low Earth orbiting systems. Similarly, satellite systems used for navigation like Nav-star or Global Positioning (GPS) system occupy a relatively Low Earth Orbit. There are also many other types of satellites : Weather satellites Research satellites and many others. Each will have its own type of orbit depending upon its application. The actual satellite orbit that is chosen will depend on factors including its function, and the area of serving. At some instances, the satellite orbit may be as low as 100 miles (160 km) for a Low Earth Orbit (LEO), whereas others may be over 22 000 miles (36000 km) high as in the case of a Geostationary Orbit (GEO). The satellite may even has an elliptical rather than a circular orbit.

Frequenz ◽  
2002 ◽  
Vol 56 (3-4) ◽  
Author(s):  
Hebatallah M. Mourad ◽  
Abd El-Aziz M. El-Basioni ◽  
Sherief S. Emam ◽  
Emad K. Al-Hussaini

2013 ◽  
Vol 10 (4) ◽  
pp. 1253-1261 ◽  
Author(s):  
Baghdad Science Journal

The effects of solar radiation pressure at several satellite (near Earth orbit satellite, low Earth orbit satellite, medium Earth orbit satellite and high Earth orbit satellite ) have been investigated. Computer simulation of the equation of motion with perturbations using step-by-step integration (Cowell's method) designed by matlab a 7.4 where using Jacobian matrix method to increase the accuracy of result.


2020 ◽  
Vol 73 (5) ◽  
pp. 1087-1105
Author(s):  
Yawei Zhai ◽  
Jaymin Patel ◽  
Xingqun Zhan ◽  
Mathieu Joerger ◽  
Boris Pervan

This paper describes a method to determine global navigation satellite systems (GNSS) satellite orbits and clocks for advanced receiver autonomous integrity monitoring (ARAIM). The orbit and clock estimates will be used as a reference truth to monitor signal-in-space integrity parameters of the ARAIM integrity support message (ISM). Unlike publicly available orbit and clock products, which aim to maximise estimation accuracy, a straightforward and transparent approach is employed to facilitate integrity evaluation. The proposed monitor is comprised of a worldwide network of sparsely distributed reference stations and will employ parametric satellite orbit models. Two separate analyses, covariance analysis and model fidelity evaluation, are carried out to assess the impact of measurement errors and orbit model uncertainty on the estimated orbits and clocks, respectively. The results indicate that a standard deviation of 30 cm can be achieved for the estimated orbit/clock error, which is adequate for ISM validation.


2021 ◽  
Vol 39 (3) ◽  
pp. 397-412
Author(s):  
Victor U. J. Nwankwo ◽  
William Denig ◽  
Sandip K. Chakrabarti ◽  
Muyiwa P. Ajakaiye ◽  
Johnson Fatokun ◽  
...  

Abstract. In this work, we simulated the atmospheric drag effect on two model SmallSats (small satellites) in low Earth orbit (LEO) with different ballistic coefficients during 1-month intervals of solar–geomagnetic quiet and perturbed conditions. The goal of this effort was to quantify how solar–geomagnetic activity influences atmospheric drag and perturbs satellite orbits, with particular emphasis on the Bastille Day event. Atmospheric drag compromises satellite operations due to increased ephemeris errors, attitude positional uncertainties and premature satellite re-entry. During a 1-month interval of generally quiescent solar–geomagnetic activity (July 2006), the decay in altitude (h) was a modest 0.53 km (0.66 km) for the satellite with the smaller (larger) ballistic coefficient of 2.2×10-3 m2 kg−1 (3.03×10-3 m2 kg−1). The associated orbital decay rates (ODRs) during this quiet interval ranged from 13 to 23 m per day (from 16 to 29 m per day). For the disturbed interval of July 2000 the significantly increased altitude loss and range of ODRs were 2.77 km (3.09 km) and 65 to 120 m per day (78 to 142 m per day), respectively. Within the two periods, more detailed analyses over 12 d intervals of extremely quiet and disturbed conditions revealed respective orbital decays of 0.16 km (0.20 km) and 1.14 km (1.27 km) for the satellite with the smaller (larger) ballistic coefficient. In essence, the model results show that there was a 6- to 7-fold increase in the deleterious impacts of satellite drag between the quiet and disturbed periods. We also estimated the enhanced atmospheric drag effect on the satellites' parameters caused by the July 2000 Bastille Day event (in contrast to the interval of geomagnetically quiet conditions). The additional percentage increase, due to the Bastille Day event, to the monthly mean values of h and ODR are 34.69 % and 50.13 % for Sat-A and 36.45 % and 68.95 % for Sat-B. These simulations confirmed (i) the dependence of atmospheric drag force on a satellite's ballistic coefficient, and (ii) that increased solar–geomagnetic activity substantially raises the degrading effect of satellite drag. In addition, the results indicate that the impact of short-duration geomagnetic transients (such as the Bastille Day storm) can have a further deleterious effect on normal satellite operations. Thus, this work increases the visibility and contributes to the scientific knowledge surrounding the Bastille Day event and also motivates the introduction of new indices used to describe and estimate the atmospheric drag effect when comparing regimes of varying solar–geomagnetic activity. We suggest that a model of satellite drag, when combined with a high-fidelity atmospheric specification as was done here, can lead to improved satellite ephemeris estimates.


Sign in / Sign up

Export Citation Format

Share Document