scholarly journals Energy production and use in Dutch agriculture.

1974 ◽  
Vol 22 (2) ◽  
pp. 107-118
Author(s):  
W.A. Dekkers ◽  
J.M. Lange ◽  
C.T. de Wit

This paper on food energy production and consumption illustrates to what extent agriculture in the Netherlands is dependent on fossil fuel. It can be seen from tabulated data on energy balance in agricultural systems that energy input for secondary production (e.g. meat, milk and eggs) exceeds energy output by approx. 60 X 1012 kcal/yr (70.1 vs. 10.2 X 1012 kcal/yr); this large difference, however, is mainly due to use of fodder (43 X 1012 kcal/yr) rather than use of fossil fuel. Possible ways to diminish the fossil energy input of the modern farm are discussed. (Abstract retrieved from CAB Abstracts by CABI’s permission)

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6497
Author(s):  
Robert Czubaszek ◽  
Agnieszka Wysocka-Czubaszek ◽  
Piotr Banaszuk

We conducted the Life Cycle Analysis (LCA) of energy production from biogas for maize and three types of wetland biomass: reed Phragmites australis, sedges Carex elata, and Carex gracilis, and “grassy vegetation” of wet meadows (WM). Biogas energy produced from maize reached over 90 GJ ha−1, which was more than four times higher than that gained from wetland biomass. However, an estimation of energy efficiency (EE) calculated as a ratio of energy input to the energy produced in a biogas plant showed that the wet fermentation (WF) of maize was similar to the values obtained for dry fermentation (DF) of sedge biomass (~0.30 GJ GJ−1). The greenhouse gases (GHG) emissions released during preparation of the feedstock and operation of the biogas plant were 150 g CO2 eq. kWhel.−1 for DF of sedges and 262 g CO2 eq. kWhel.−1 for WF of Phragmites. Compared to the prevailing coal-based power generation in Central Europe, anaerobic digestion (AD) of wetland biomass could contribute to a reduction in GHG emissions by 74% to 85%. However, calculations covering the GHG emissions during the entire process “from field to field” seem to disqualify AD of conservation biomass as valid low-GHG energy supply technology. Estimated emissions ranged between 795 g CO2 eq. kWhel.−1 for DF of Phragmites and 2738 g CO2 eq. kWhel.−1 for the WM and, in most cases, exceeded those related to fossil fuel technologies.


2016 ◽  
Vol 39 (1) ◽  
Author(s):  
Nitin Gudadhe ◽  
M. B. Dhonde ◽  
N. A. Hirwe ◽  
N. M. Thete

This study was conducted during the year 2006-07 and 2007-08 to determine how energy balances of crop production are affected by cotton-chickpea cropping sequence and different sources of organic and inorganic fertilizer under the semi-arid conditions of western Maharashtra. The energy input and output, energy balance per unit input ratio and the energy output/ input ratio were varied significantly individually to cotton and chickpea during both the years. However on pooled mean basis to cotton-chickpea cropping sequence, the energy input, output and energy balance were significantly higher by application of (RDF) Recommended Dose of Fertilizer according to Soil Test Crop Response (STCR) equation to cotton and 100% RDF to chickpea. Significantly higher energy balance per unit input and energy output per input ratio (6.46 MJ/ ha and 7.46) were recorded by 100% RDF + 10 FYM/ha to cotton and it was 5.72 MJ/ha and 6.72 by 100% RDF to chickpea. Application of RDF according to STCR equation (₹ 64960 and 3.07) to cotton and 100% RDF (₹ 46744 and 2.23) application to chickpea registered higher net monetary returns and benefit cost ratio respectively.


Author(s):  
N. V. Pavlov ◽  
A. E. Ivanova ◽  
T. N. Petrova

Structure analysis of the dynamics of fuel energy resources production, export and consumption in the Sakha Republic (Yakutia) for the period from 2006 to 2015 has been conducted based on the compiled annual fuel and energy balances, trends in energy production and consumption are identified as well.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
PARMEET SINGH ◽  
M. A. RATHE ◽  
R. H. KANTH ◽  
LAL SINGH ◽  
PURSHOTAM SINGH ◽  
...  

Energy being the critical aspect of agricultural production, the modern agricultural system takes into account all the agricultural operations in terms of energy input and the yield obtained as energy output. It is this energy balance equation which describes the viability of a system. Depending upon the variation in energy consumption among various agro–climatic and environmental conditions and the output therein, a wide variation exists in the viability of these systems. In the present study, the energy balance in Kala zeera management system was taken into consideration. Data and information were collected and different energy use efficiency indices were calculated. Amon the production practices in Kala zeera cultivation, consumed root tubers for sowing were the most energy consuming input (43.32%) followed by diesel fuel (20.28 %) and Nitrogen (18.30). the total energy input could be classified in Kala zeera fields as direct ( 10.80%), indirect (25.60%), renewable (43.3%) and non-renewable (20.27%). Overall in view of sustainability,it is recommended that major input consumptive processes shall be optimized to increase energy use efficiency


Author(s):  
Winfried Schäfer

Assessment results of renewable energy supply in agriculture and forestry are often questionable because 1. the methodology does not describe the nature dependent conditions of agricultural production, 2. there is no standard system boundary, 3. thermodynamic laws are violated and/or ignored, 4. direct and embodied energy is mixed, 5. the mainstream life cycle analysis (LCA) takes downstream and upstream inputs arbitrarily into consideration, depending on the research objectives and the research-funding agency. Thus, the calculation results neglect a wide range of specific energy input figures of upstream and down-stream factors outside farm level resulting in non-comparable figures. The EROI describes the ratio between energy output and input. The advantage of this measure is that energy input and output of fuel supply as well as the resulting CO2 emissions are comparable. There are no standards to calculate the indirect energy input of commodities and services hidden in monetary inputs (insurances, rent for land, subsidies and fees etc.). They are usually excluded because procedures to handle them as energy input are rare. The easiest way to quantify the indirect energy is the use of the energy intensity (EI). Multiplying the price of any good or service with the energy intensity results in a rough estimation of energy embodied in the good or service. Applying the EROI and the EI to compare the efficiency of fossil and renewable energy supply released the following results: Substitution of fossil fuels by renewable ones causes always additional costs. Most known renewable energy supply techniques need more energy than fossil fuel exploitation. Polluting the environment is - for the time being – the most competitive alternative. Renewable engine fuel, produced from biomass, is not competitive with fossil fuels in terms of EROI. The energy of one ha biomass may substitute gasoline to drive a car 40 000 km with biogas. Electric power harnessed from one ha solar panels enables to drive an electric vehicle 5 000 000 km applying the same calculation method. The most efficient way to mitigate CO2 emissions is to include the entropy of agricultural products in energy policy decision making. Albeit wood has a high EROI, processing fuels from wood of low entropy makes no sense: Producing a table from a tree and burning the residues and the table at the end of its lifetime renders the same energy gain as using the tree for fuel only. The EROI of fossil fuels remains probably on high level during the next 50 to 100 years. Oil and gas will be replaced by coal, in Finland also by nuclear power, peat and wood. Although biomass is more renewable than fossil fuels, its EROI is lower and substitution will not reduce CO2 emissions. Climate change may force humankind to reduce fossil fuel consumption. The only sustainable way to achieve this is reduction of fossil fuel exploitation.


Author(s):  
Kagan Kokten ◽  
Erdal Cacan ◽  
Osman Gokdogan ◽  
Mehmet Firat Baran

The aim of this study is to determine an energy balance of common vetch, hungarian vetch and narbonne vetch production during the production season of 2015 in Bingol province of Turkey. The energy input in common vetch, hungarian vetch and narbonne vetch production have been calculated as 13060.72 MJ ha-1, 15767.22 MJ ha-1and 14769.73 MJ ha-1, respectively. The energy output in common vetch, hungarian vetch and narbonne vetch production have been calculated as 42048.22 MJ ha-1, 10051.33 MJ ha-1 and 11963.62 MJ ha-1, respectively. Energy usage efficiency, specific energy, energy productivity and net energy values related to common vetch, Hungarian vetch and Narbonne vetch production have been determined as 3.22, 0.64, 0.81; 5.46 MJ kg-1, 29.98 MJ kg-1, 21.98 MJ kg-1; 0.18 kg MJ-1, 0.03 kg MJ-1, 0.05 kg MJ-1 and 28987.50 MJ ha-1, -5715.89 MJ ha-1, -2806.11 MJ ha-1 respectively for each type. The total renewable energy input applied in common vetch, hungarian and narbonne vetch was 26.85, 20.42 and 29.69 per cent, respectively.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 464 ◽  
Author(s):  
Zubia Saleem ◽  
Erum Pervaiz ◽  
M. Usman Yousaf ◽  
M. Bilal Khan Niazi

Hydrogen production via water dissociation under exposure to sunlight has emanated as an environmentally friendly, highly productive and expedient process to overcome the energy production and consumption gap, while evading the challenges of fossil fuel depletion and ecological contamination. Various classes of materials are being explored as viable photocatalysts to achieve this purpose, among which, the two-dimensional materials have emerged as prominent candidates, having the intrinsic advantages of visible light sensitivity; structural and chemical tuneability; extensively exposed surface area; and flexibility to form composites and heterostructures. In an abridged manner, the common types of 2D photocatalysts, their position as potential contenders in photocatalytic processes, their derivatives and their modifications are described herein, as it all applies to achieving the coveted chemical and physical properties by fine-tuning the synthesis techniques, precursor ingredients and nano-structural alterations.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3615
Author(s):  
Adelaide Cerveira ◽  
Eduardo J. Solteiro Pires ◽  
José Baptista

Green energy has become a media issue due to climate changes, and consequently, the population has become more aware of pollution. Wind farms are an essential energy production alternative to fossil energy. The incentive to produce wind energy was a government policy some decades ago to decrease carbon emissions. In recent decades, wind farms were formed by a substation and a couple of turbines. Nowadays, wind farms are designed with hundreds of turbines requiring more than one substation. This paper formulates an integer linear programming model to design wind farms’ cable layout with several turbines. The proposed model obtains the optimal solution considering different cable types, infrastructure costs, and energy losses. An additional constraint was considered to limit the number of cables that cross a walkway, i.e., the number of connections between a set of wind turbines and the remaining wind farm. Furthermore, considering a discrete set of possible turbine locations, the model allows identifying those that should be present in the optimal solution, thereby addressing the optimal location of the substation(s) in the wind farm. The paper illustrates solutions and the associated costs of two wind farms, with up to 102 turbines and three substations in the optimal solution, selected among sixteen possible places. The optimal solutions are obtained in a short time.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 682
Author(s):  
Zita Szabó ◽  
Viola Prohászka ◽  
Ágnes Sallay

Nowadays, in the context of climate change, efficient energy management and increasing the share of renewable energy sources in the energy mix are helping to reduce greenhouse gases. In this research, we present the energy system and its management and the possibilities of its development through the example of an ecovillage. The basic goal of such a community is to be economically, socially, and ecologically sustainable, so the study of energy system of an ecovillage is especially justified. As the goal of this community is sustainability, potential technological and efficiency barriers to the use of renewable energy sources will also become visible. Our sample area is Visnyeszéplak ecovillage, where we examined the energy production and consumption habits and possibilities of the community with the help of interviews, literature, and map databases. By examining the spatial structure of the settlement, we examined the spatial structure of energy management. We formulated development proposals that can make the community’s energy management system more efficient.


Sign in / Sign up

Export Citation Format

Share Document