scholarly journals A new area of stem cell therapy for Parkinson disease

Author(s):  
Khaled M. Hassan ◽  
Zahra H. Alqarni ◽  
Ali A. Almontashri ◽  
Ahmed M. Allubly ◽  
Khalid A. Alalmaee ◽  
...  

No treatment currently can be used in order to slow or even stop the progression of Parkinson's disease. Nowadays, researchers are already using stem cells to grow dopamine-producing nerve cells in the lab so that they can study the disease, especially in those cases where there is a known genetic cause for the condition. The development of the advanced cellular therapies and using induced pluripotent stem cells is making it possible to combat the progression of the disease without the resulting motor complications. It has been shown that the transplantation of many cell sources leads to reduce Parkinson’s disease symptoms in animal models.

2020 ◽  
pp. 153537022096178
Author(s):  
Jian Feng

The 30 trillion cells that self-assemble into a human being originate from the pluripotent stem cells in the inner cell mass of a human blastocyst. The discovery of induced pluripotent stem cells (iPSCs) makes it possible to approximate various aspects of this natural developmental process artificially by generating materials that can be used in invasive mechanistic studies of virtually all human conditions. In Parkinson’s disease, instructions computed by the basal ganglia to control voluntary motor functions break down, leading to widespread rhythmic bursting activities in the basal ganglia and beyond. It is thought that these oscillatory neuronal activities, which disrupt aperiodic neurotransmission in a normal brain, may reduce information content in the instructions for motor control. Using midbrain neuronal cultures differentiated from iPSCs of Parkinson’s disease patients with parkin mutations, we find that parkin mutations cause oscillatory neuronal activities when dopamine D1-class receptors are activated. This system makes it possible to study the molecular basis of rhythmic bursting activities in Parkinson’s disease. Further development of stem cell models of Parkinson’s disease will enable better approximation of the situation in the brain of Parkinson’s disease patients. In this review, I will discuss what has been found in the past about the pathophysiology of motor dysfunction in Parkinson’s disease, especially oscillatory neuronal activities and how stem cell technologies may transform our abilities to understand the pathophysiology of Parkinson’s disease. Impact statement Research on the pathophysiology of Parkinson’s disease (PD) has generated effective therapies such as deep brain stimulation. A better understanding of PD pathophysiology calls for patient-specific materials amenable for invasive mechanistic studies. In this minireview, I discuss our recent work on oscillatory neuronal activities in midbrain neurons differentiated from induced pluripotent stem cells (iPSCs) of PD patients with parkin mutations. These patient-specific neurons enable a variety of studies previously not feasible in the human system. Further development in stem cell technologies may generate more realistic models for us to decipher PD pathophysiology. These new developments will transform research and development in Parkinson’s disease.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Vasiliki Panagiotakopoulou ◽  
Dina Ivanyuk ◽  
Silvia De Cicco ◽  
Wadood Haq ◽  
Aleksandra Arsić ◽  
...  

Abstract Parkinson’s disease-associated kinase LRRK2 has been linked to IFN type II (IFN-γ) response in infections and to dopaminergic neuronal loss. However, whether and how LRRK2 synergizes with IFN-γ remains unclear. In this study, we employed dopaminergic neurons and microglia differentiated from patient-derived induced pluripotent stem cells carrying LRRK2 G2019S, the most common Parkinson’s disease-associated mutation. We show that IFN-γ enhances the LRRK2 G2019S-dependent negative regulation of AKT phosphorylation and NFAT activation, thereby increasing neuronal vulnerability to immune challenge. Mechanistically, LRRK2 G2019S suppresses NFAT translocation via calcium signaling and possibly through microtubule reorganization. In microglia, LRRK2 modulates cytokine production and the glycolytic switch in response to IFN-γ in an NFAT-independent manner. Activated LRRK2 G2019S microglia cause neurite shortening, indicating that LRRK2-driven immunological changes can be neurotoxic. We propose that synergistic LRRK2/IFN-γ activation serves as a potential link between inflammation and neurodegeneration in Parkinson’s disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xinchao Hu ◽  
Chengyuan Mao ◽  
Liyuan Fan ◽  
Haiyang Luo ◽  
Zhengwei Hu ◽  
...  

Parkinson’s disease (PD) is the second most common neurodegenerative disease. The molecular mechanisms of PD at the cellular level involve oxidative stress, mitochondrial dysfunction, autophagy, axonal transport, and neuroinflammation. Induced pluripotent stem cells (iPSCs) with patient-specific genetic background are capable of directed differentiation into dopaminergic neurons. Cell models based on iPSCs are powerful tools for studying the molecular mechanisms of PD. The iPSCs used for PD studies were mainly from patients carrying mutations in synuclein alpha (SNCA), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PARK2), cytoplasmic protein sorting 35 (VPS35), and variants in glucosidase beta acid (GBA). In this review, we summarized the advances in molecular mechanisms of Parkinson’s disease using iPSC models.


2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Michael J. Devine ◽  
Mina Ryten ◽  
Petr Vodicka ◽  
Alison J. Thomson ◽  
Tom Burdon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document