scholarly journals Characteristic-dependent linear rank inequalities in 21 variables

Author(s):  
Victor Peña-Macias ◽  
Humberto Sarria - Zapata

In Linear Algebra over finite fields, a characteristic-dependent linear rank inequality is a linear inequality that holds by ranks of spans of vector subspaces of a finite dimensional vector space over a finite field of determined characteristic, and does not in general hold over fields with other characteristic. This paper shows a preliminary result in the production of these inequalities. We produce three new inequalities in 21 variables using as guide a particular binary matrix, with entries in a finite field, whose rank is 8, with characteristic 2; 9 with characteristic 3; or 10 with characteristic neither 2 nor 3. The first inequality is true over fields whose characteristic is 2; the second inequality is true over fields whose characteristic is 2 or 3; the third inequality is true over fields whose characteristic is neither 2 nor 3.

2002 ◽  
Vol 73 (1) ◽  
pp. 85-96 ◽  
Author(s):  
Christopher Parker ◽  
Peter Rowley

AbstractSuppose that V is a finite dimensional vector space over a finite field of characteristic 2, G is the symplectic group on V and a is a non-zero vector of V. Here we classify irreducible subgroups of G containing a certain subgroup of O2(StabG(a)) all of whose non-trivial elements are 2-transvections.


2017 ◽  
Vol 16 (01) ◽  
pp. 1750007 ◽  
Author(s):  
Angsuman Das

In this paper, we study nonzero component graph [Formula: see text] of a finite-dimensional vector space [Formula: see text] over a finite field [Formula: see text]. We show that the graph is Hamiltonian and not Eulerian. We also characterize the maximal cliques in [Formula: see text] and show that there exists two classes of maximal cliques in [Formula: see text]. We also find the exact clique number of [Formula: see text] for some particular cases. Moreover, we provide some results on size, edge-connectivity and chromatic number of [Formula: see text].


Author(s):  
Frieder Knüppel ◽  
Gerd Thomsen

AbstractSuppose we are given a regular symmetric bilinear from on a finite-dimensional vector space V over a commutative field K of characteristic ≠ 2. We want to write given elements of the commutator subgroup ω(V) (of the orthogonal group O(V)) and also of the kernel of the spinorial norm ker(Θ) as (short) products of involutions and as products of commutators


1960 ◽  
Vol 3 (3) ◽  
pp. 293-295
Author(s):  
Jonathan Wild

Let E be a finite dimensional vector space over a finite field of characteristic p > 0; dim E = n. Let (x,y) be a symmetric bilinear form in E. The radical Eo of this form is the subspace consisting of all the vectors x which satisfy (x,y) = 0 for every y ϵ E. The rank r of our form is the codimension of the radical.


2004 ◽  
Vol 2004 (29) ◽  
pp. 1533-1541 ◽  
Author(s):  
Petr Vojtechovský

We first find the combinatorial degree of any mapf:V→F, whereFis a finite field andVis a finite-dimensional vector space overF. We then simplify and generalize a certain construction, due to Chein and Goodaire, that was used in characterizing code loops as finite Moufang loops that possess at most two squares. The construction yields binary codes of high divisibility level with prescribed Hamming weights of intersections of codewords.


2020 ◽  
pp. 1-14
Author(s):  
NICOLÁS ANDRUSKIEWITSCH ◽  
DIRCEU BAGIO ◽  
SARADIA DELLA FLORA ◽  
DAIANA FLÔRES

Abstract We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.


Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


2019 ◽  
Vol 18 (04) ◽  
pp. 1950069
Author(s):  
Qian Liu ◽  
Yujuan Sun

Permutation polynomials have important applications in cryptography, coding theory, combinatorial designs, and other areas of mathematics and engineering. Finding new classes of permutation polynomials is therefore an interesting subject of study. Permutation trinomials attract people’s interest due to their simple algebraic forms and additional extraordinary properties. In this paper, based on a seventh-degree and a fifth-degree Dickson polynomial over the finite field [Formula: see text], two conjectures on permutation trinomials over [Formula: see text] presented recently by Li–Qu–Li–Fu are partially settled, where [Formula: see text] is a positive integer.


1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.


Sign in / Sign up

Export Citation Format

Share Document