Exploring the temperature tolerance of a cave beetle

10.18258/8137 ◽  
2016 ◽  
Author(s):  
Markus Friedrich Markus Friedrich
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tânia Pinheiro ◽  
Ka Ying Florence Lip ◽  
Estéfani García-Ríos ◽  
Amparo Querol ◽  
José Teixeira ◽  
...  

AbstractElucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and an industrial bioethanol strain, Ethanol Red, grown at sub- and supra-optimal temperatures under chemostat conditions. We employed anaerobic conditions, mimicking the industrial processes. The proteomic profile of these strains in all conditions was performed by sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS), allowing the quantification of 997 proteins, data available via ProteomeXchange (PXD016567). Our analysis demonstrated that temperature responses differ between the strains; however, we also found some common responsive proteins, revealing that the response to temperature involves general stress and specific mechanisms. Overall, sub-optimal temperature conditions involved a higher remodeling of the proteome. The proteomic data evidenced that the cold response involves strong repression of translation-related proteins as well as induction of amino acid metabolism, together with components related to protein folding and degradation while, the high temperature response mainly recruits amino acid metabolism. Our study provides a global and thorough insight into how growth temperature affects the yeast proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.


2020 ◽  
pp. 100287
Author(s):  
Nating Yang ◽  
Yonghui Zhao ◽  
Hao Zhang ◽  
Weikai Xiang ◽  
Yuhan Sun ◽  
...  

Author(s):  
Juliane Rafaele Alves Barros ◽  
Miguel Julio Machado Guimarães ◽  
Rodrigo Moura e Silva ◽  
Maydara Thaylla Cavalcanti Rêgo ◽  
Natoniel Franklin de Melo ◽  
...  

Author(s):  
Dan Wu ◽  
Chuying Yu ◽  
Wenbin Zhong

Natural nacre built up with brick-and-mortar architecture, exhibiting extraordinary strength and toughness, provides an inspiration to construct high-performance multifunctional film for flexible energy storage and portable electrical devices. In the...


1969 ◽  
Vol 10 (3/4) ◽  
pp. 293 ◽  
Author(s):  
Andrew J. McErlean ◽  
Joseph A. Mihursky ◽  
Howard J. Brinkley

Sign in / Sign up

Export Citation Format

Share Document