scholarly journals The Cognitive And Motivational Scaffolding That First Year Engineering Students Need When Solving Design Problems In Collaborative Teams

2020 ◽  
Author(s):  
Senay Purzer
Author(s):  
Naomi C. Chesler ◽  
Elizabeth Bagley ◽  
Eric Breckenfeld ◽  
Devin West ◽  
David Williamson Shaffer

Engineering institutions nationwide are pursuing first-year engineering design courses to attract and retain nontraditional students. However, these courses often have high enrollment rates and can be resource intensive. Virtual design projects offer a potential solution to the physical resources requirements but often result in an overly constrained design space, creating uninteresting or non-challenging design problems. We are developing a design problem within a novel virtual environment (i.e., a game) that provides first-year engineering undergraduates with a more authentic engineering design experience and a more complete and accurate understanding of the engineering profession. The design problem presented challenges students to incorporate carbon nanotubes and chemical surfactants into a hemodialysis ultrafiltration unit. Our approach seeks to provide students with experience in the skills, knowledge, values, identity, and epistemology of the engineering profession, which is the epistemic frame of the profession. The virtual environment also provides a uniquely comprehensive platform for assessing the students’ epistemic frame development over time. We anticipate that this approach will be highly engaging to first-year undergraduate engineering students and will help engineering instructors understand how engineers-in-training learn to become engineers.


Author(s):  
Colin M. Gray ◽  
Seda Yilmaz ◽  
Shanna Daly ◽  
Colleen M. Seifert ◽  
Richard Gonzalez

We report four cases from a larger study, focusing on participants’ self-identified “most creative” concept in relation to their other concepts. As part of an ideation session, first-year engineering students were asked to create concepts for one of two engineering design problems in an 85-minute period, and were exposed to one of two different forms of fixation. Participants worked as individuals, first using traditional brainstorming techniques and generating as many ideas as possible. Design Heuristics cards were then introduced, and students were asked to generate as many additional concepts as possible. After the activity, participants ranked all of the concepts they generated from most to least creative. Representative cases include a detailed analysis of the concept that each participant rated as “most creative,” idea generation method used, and relative location and relationship of the concept to other concepts generated by that participant. Across four cases, we identified a number of characteristic “misrules” or misconceptions, revealing that first-year students judge creativity in their concepts in ways that could inhibit their ability to produce truly novel concepts. We present Design Heuristics as a tool to encourage the exploration of creative concept pathways, empowering students to create more novel concepts by rejecting misrules about creativity.


Author(s):  
Danny D Mann ◽  
Kris J Dick ◽  
Sandra A Ingram

In previous years, several improvements to the teaching of engineering design were made by staff in the Department of Biosystems Engineering at The University of Manitoba. The first innovation occurred when a trilogy of courses spanning the final three years of the program was introduced as a replacement for a single capstone course in the final year of the program. In its original conception, engineering students were to get three opportunities to be involved in design problems originating from industry, with greater expectations with each subsequent experience. A second innovation occurred when technical communication was formally integrated within the trilogy of design courses. This innovation has helped engineering students realize the value of professional communication skills in collaborating with each other and in preparing reports and presentations for an industry client. A third innovation occurred three years ago when the decision was made to allow students to participate in the prototyping of their designs. The so-called “Design Trilogy” now consists of a single course (Design Trilogy I) taken during the second year of the engineering program (which builds upon the first-year design experience with the requirement of a conceptual solution in response to a design problem provided by industry) and two courses taken during the final year of the program. Students are required to have a design completed on paper by the completion of Design Trilogy II and fabrication of the prototype occurs during Design Trilogy III. The student experience in the Design Trilogy, with particular emphasis on curriculum innovations in Design Trilogy III, will be discussed.


Author(s):  
Jeremiah Vanderlaan ◽  
Josh Richert ◽  
James Morrison ◽  
Thomas Doyle

We are a group of engineering students, in our first year of undergraduate study. We have been selected from one thousand first year students and have competed and won the PACE competition. All engineers share a common general first year, but we have been accepted into Civil and Mechanical engineering. This project was assigned as the final project in the Design and Graphics course. The project we are tasked with, called the Cornerstone Design Project, is to first dissect a product, discover how it works, dimension each part and create a fully assembled model using CAD software (Solid Edge V20 in our case). As part of discovering how it works we must benchmark it so the device can be compared with competing products. The goal of the project is to develop a full understanding of part modeling and assembly in Solid Edge, learn proper measurement techniques, and learn the process of reverse engineering and product dissection. All of these tasks were stepping stones to help us fully understand how the device, and all its components, work.


Author(s):  
Umar Iqbal ◽  
Deena Salem ◽  
David Strong

The objective of this paper is to document the experience of developing and implementing a second-year course in an engineering professional spine that was developed in a first-tier research university and relies on project-based core courses. The main objective of this spine is to develop the students’ cognitive and employability skills that will allow them to stand out from the crowd of other engineering graduates.The spine was developed and delivered for the first time in the academic year 2010-2011 for first-year general engineering students. In the year 2011-2012, those students joined different programs, and accordingly the second-year course was tailored to align with the different programs’ learning outcomes. This paper discusses the development and implementation of the course in the Electrical and Computer Engineering (ECE) department.


Author(s):  
Sean Maw ◽  
Janice Miller Young ◽  
Alexis Morris

Most Canadian engineering students take a computing course in their first year that introduces them to digital computation. The Canadian Engineering Accreditation Board does not specify the language(s) that can or should be used for instruction. As a result, a variety of languages are used across Canada. This study examines which languages are used in degree-granting institutions, currently and in the recent past. It also examines why institutions have chosen the languages that they currently use. In addition to the language used in instruction, the types and hours of instruction are also analyzed. Methods of instruction and evaluation are compared, as well as the pedagogical philosophies of the different programs with respect to introductory computing. Finally, a comparison of the expected value of this course to graduates is also presented. We found a more diverse landscape for introductory computing courses than anticipated, in most respects. The guiding ethos at most institutions is skill and knowledge development, especially around problem solving in an engineering context. The methods to achieve this are quite varied, and so are the languages employed in such courses. Most programs currently use C/C++, Matlab, VB and/or Python.


Author(s):  
Claire Mah ◽  
Daphne Hong ◽  
Vanessa Chen ◽  
Emmanuel Stefanakis

2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Chinweike Eseonu ◽  
Martin A Cortes

There is a culture of disengagement from social consideration in engineering disciplines. This means that first year engineering students, who arrive planning to change the world through engineering, lose this passion as they progress through the engineering curriculum. The community driven technology innovation and investment program described in this paper is an attempt to reverse this trend by fusing community engagement with the normal engineering design process. This approach differs from existing project or trip based approaches – outreach – because the focus is on local communities with which the university team forms a long-term partnership through weekly in-person meetings and community driven problem statements – engagement.


Sign in / Sign up

Export Citation Format

Share Document