scholarly journals Mapping Assets of Diverse Groups for Chemical Engineering Design Problem Framing Ability

2016 ◽  
Author(s):  
Vanessa Svihla ◽  
Abhaya Datye ◽  
Jamie Gomez ◽  
Victor Law ◽  
Sophia Bowers
2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Murtuza Shergadwala ◽  
Ilias Bilionis ◽  
Karthik N. Kannan ◽  
Jitesh H. Panchal

Many decisions within engineering systems design are typically made by humans. These decisions significantly affect the design outcomes and the resources used within design processes. While decision theory is increasingly being used from a normative standpoint to develop computational methods for engineering design, there is still a significant gap in our understanding of how humans make decisions within the design process. Particularly, there is lack of knowledge about how an individual's domain knowledge and framing of the design problem affect information acquisition decisions. To address this gap, the objective of this paper is to quantify the impact of a designer's domain knowledge and problem framing on their information acquisition decisions and the corresponding design outcomes. The objective is achieved by (i) developing a descriptive model of information acquisition decisions, based on an optimal one-step look ahead sequential strategy, utilizing expected improvement maximization, and (ii) using the model in conjunction with a controlled behavioral experiment. The domain knowledge of an individual is measured in the experiment using a concept inventory, whereas the problem framing is controlled as a treatment variable in the experiment. A design optimization problem is framed in two different ways: a domain-specific track design problem and a domain-independent function optimization problem (FOP). The results indicate that when the problem is framed as a domain-specific design task, the design solutions are better and individuals have a better state of knowledge about the problem, as compared to the domain-independent task. The design solutions are found to be better when individuals have a higher knowledge of the domain and they follow the modeled strategy closely.


2009 ◽  
Author(s):  
Talib Hashim Hasan ◽  
Mohammed Azram ◽  
Jamal Ibrahim Daoua ◽  
Abdul Halim Hakim ◽  
Pandian Vasant ◽  
...  

Author(s):  
D. W. Ruth ◽  
M. G. Britton

If the teaching of engineering is indeed the practice of engineering, then it stands to reason that the development of engineering curricula can be treated as an engineering design problem. In this paper, the authors apply the engineering design process to develop a list of courses, for a Mechanical Engineering Program, that conforms to the constraints of the Canadian system of engineering accreditation. For the purpose of this exercise, the following steps are used to define the engineering design process: identical and delimit the problem, establish the outline of the solution (and alternatives), break the problem into its constituent parts, analyze the parts, synthesize the parts into a final configuration, and document the solution. The limits and constraints on the solution are based on the criteria specified by the Canadian Engineering Accreditation Board (CEAB), the syllabus specified by the Canadian Engineering Qualifications Board (CEQB), some common rules-of-thumb, and previously published work by the authors. By utilizing the engineering design process, schools of engineering and applied science can ensure that their curricula, at least at the level of the course specification, will conform to the CEAB and CEQB requirements. As a final exercise, variations on the curriculum are studied to analyze the possibility of introducing such additional elements as options and minors, expanded studies in the arts and humanities, and development of skills in additional languages.


2021 ◽  
pp. 1-8
Author(s):  
Preethi Baligar ◽  
Kaushik Mallibhat ◽  
Sanjeev Kavale ◽  
Gopalkrishna Joshi

Sign in / Sign up

Export Citation Format

Share Document