Quantifying the Impact of Domain Knowledge and Problem Framing on Sequential Decisions in Engineering Design

2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Murtuza Shergadwala ◽  
Ilias Bilionis ◽  
Karthik N. Kannan ◽  
Jitesh H. Panchal

Many decisions within engineering systems design are typically made by humans. These decisions significantly affect the design outcomes and the resources used within design processes. While decision theory is increasingly being used from a normative standpoint to develop computational methods for engineering design, there is still a significant gap in our understanding of how humans make decisions within the design process. Particularly, there is lack of knowledge about how an individual's domain knowledge and framing of the design problem affect information acquisition decisions. To address this gap, the objective of this paper is to quantify the impact of a designer's domain knowledge and problem framing on their information acquisition decisions and the corresponding design outcomes. The objective is achieved by (i) developing a descriptive model of information acquisition decisions, based on an optimal one-step look ahead sequential strategy, utilizing expected improvement maximization, and (ii) using the model in conjunction with a controlled behavioral experiment. The domain knowledge of an individual is measured in the experiment using a concept inventory, whereas the problem framing is controlled as a treatment variable in the experiment. A design optimization problem is framed in two different ways: a domain-specific track design problem and a domain-independent function optimization problem (FOP). The results indicate that when the problem is framed as a domain-specific design task, the design solutions are better and individuals have a better state of knowledge about the problem, as compared to the domain-independent task. The design solutions are found to be better when individuals have a higher knowledge of the domain and they follow the modeled strategy closely.

2017 ◽  
Author(s):  
Marilena Oita ◽  
Antoine Amarilli ◽  
Pierre Senellart

Deep Web databases, whose content is presented as dynamically-generated Web pages hidden behind forms, have mostly been left unindexed by search engine crawlers. In order to automatically explore this mass of information, many current techniques assume the existence of domain knowledge, which is costly to create and maintain. In this article, we present a new perspective on form understanding and deep Web data acquisition that does not require any domain-specific knowledge. Unlike previous approaches, we do not perform the various steps in the process (e.g., form understanding, record identification, attribute labeling) independently but integrate them to achieve a more complete understanding of deep Web sources. Through information extraction techniques and using the form itself for validation, we reconcile input and output schemas in a labeled graph which is further aligned with a generic ontology. The impact of this alignment is threefold: first, the resulting semantic infrastructure associated with the form can assist Web crawlers when probing the form for content indexing; second, attributes of response pages are labeled by matching known ontology instances, and relations between attributes are uncovered; and third, we enrich the generic ontology with facts from the deep Web.


2016 ◽  
Author(s):  
Vanessa Svihla ◽  
Abhaya Datye ◽  
Jamie Gomez ◽  
Victor Law ◽  
Sophia Bowers

Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 575
Author(s):  
Li ◽  
Dai ◽  
Wang

In banks, governments, and internet companies, due to the increasing demand for data in various information systems and continuously shortening of the cycle for data collection and update, there may be a variety of data quality issues in a database. As the expansion of data scales, methods such as pre-specifying business rules or introducing expert experience into a repair process are no longer applicable to some information systems requiring rapid responses. In this case, we divided data cleaning into supervised and unsupervised forms according to whether there were interventions in the repair processes and put forward a new dimension suitable for unsupervised cleaning in this paper. For weak logic errors in unsupervised data cleaning, we proposed an attribute correlation-based (ACB)-Framework under blocking, and designed three different data blocking methods to reduce the time complexity and test the impact of clustering accuracy on data cleaning. The experiments showed that the blocking methods could effectively reduce the repair time by maintaining the repair validity. Moreover, we concluded that the blocking methods with a too high clustering accuracy tended to put tuples with the same elements into a data block, which reduced the cleaning ability. In summary, the ACB-Framework with blocking can reduce the corresponding time cost and does not need the guidance of domain knowledge or interventions in repair, which can be applied in information systems requiring rapid responses, such as internet web pages, network servers, and sensor information acquisition.


Author(s):  
Ann F. McKenna ◽  
Xaver Neumeyer ◽  
Wei Chen

Many engineering departments often struggle with meeting “the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context” (outcome h) that is required by ABET. The already packed curricula provide few opportunities to offer meaningful experiences to address this outcome, and most departments relegate this requirement to an early cornerstone or later capstone design experience as a result, making these courses an ineffective “catch all” for many ABET requirements. We address this issue by using the paradigm of product archaeology, defined as the process of reconstructing the lifecycle of a product — the customer requirements, design specifications, and manufacturing processes used to produce it — to understand the decisions that led to its development. By considering products as designed artifacts with a history rooted in their development, we embed context as a central component in developing design solutions. Specifically, in our work we have implemented several approaches to integrate contextual thinking into a senior level engineering design course. Following Kolb’s model of experiential learning and an instructional framework adapted for product archaeology (inclusive of evaluate-explain-prepare-excavate activities) we have restructured the course to embed specific and targeted reflection, dissection, and analysis activities so that students teams effectively address the global, economic, environmental, and societal factors in their design solutions. This paper provides the theoretical framework of our instructional approach, describes the specific instructional activities we implemented, and results from our pre and post survey assessments that describe the impact on students’ understanding of contextual as well engineering design topics.


2020 ◽  
Vol 34 (03) ◽  
pp. 2901-2908 ◽  
Author(s):  
Weijie Liu ◽  
Peng Zhou ◽  
Zhe Zhao ◽  
Zhiruo Wang ◽  
Qi Ju ◽  
...  

Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by being equipped with a KG without pre-training by itself because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.


Author(s):  
Katherine Fu ◽  
Joel Chan ◽  
Jonathan Cagan ◽  
Kenneth Kotovsky ◽  
Christian Schunn ◽  
...  

This work lends insight into the meaning and impact of “near” and “far” analogies. A cognitive engineering design study is presented that examines the effect of the distance of analogical design stimuli on design solution generation, and places those findings in context of results from the literature. The work ultimately sheds new light on the impact of analogies in the design process and the significance of their distance from a design problem. In this work, the design repository from which analogical stimuli are chosen is the U.S. patent database, a natural choice, as it is one of the largest and easily accessed catalogued databases of inventions. The “near” and “far” analogical stimuli for this study were chosen based on a structure of patents, created using a combination of Latent Semantic Analysis and a Bayesian based algorithm for discovering structural form, resulting in clusters of patents connected by their relative similarity. The findings of this engineering design study are contextualized with the findings of recent work in design by analogy, by mapping the analogical stimuli used in the earlier work into similar structures along with the patents used in the current study. Doing so allows the discovery of a relationship between all of the stimuli and their relative distance from the design problem. The results confirm that “near” and “far” are relative terms, and depend on the characteristics of the potential stimuli. Further, although the literature has shown that “far” analogical stimuli are more likely to lead to the generation innovative solutions with novel characteristics, there is such a thing as too far. That is, if the stimuli are too distant, they then can become harmful to the design process. Importantly, as well, the data mapping approach to identify analogies works, and is able to impact the effectiveness of the design process. This work has implications not only in the area of finding inspirational designs to use for design by analogy processes in practice, but also for synthesis, or perhaps even unification, of future studies in the field of design by analogy.


Author(s):  
Yong Zeng ◽  
Shengji Yao ◽  
Michel Couturier ◽  
Frank Collins

Recently a new design methodology, Environment-Based Design (EBD) [1, 2] has been developed. In using the model of EBD, three elements are important: primitive synthesis knowledge, primitive environment and primitive solutions. Based on the three elements, three design strategies have been validated in [3] for generating new design solutions: formulating design problems differently, changing the sequence of decomposition of the design problem and extending synthesis knowledge. Increasing the possibilities of generating new design solutions may increase the chance of getting creative design solutions. Thus the three strategies for leading to new design solutions can be introduced into our engineering design education for helping and inspiring students generate creative design solutions. In this paper, we will first briefly introduce EBD model and the three design strategies leading to new design solutions, then explain how EBD can be integrated into the design education of engineering students and elaborate how the design strategies can be used to help students generate different design solutions.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Katherine Fu ◽  
Joel Chan ◽  
Jonathan Cagan ◽  
Kenneth Kotovsky ◽  
Christian Schunn ◽  
...  

This work lends insight into the meaning and impact of “near” and “far” analogies. A cognitive engineering design study is presented that examines the effect of the distance of analogical design stimuli on design solution generation, and places those findings in context of results from the literature. The work ultimately sheds new light on the impact of analogies in the design process and the significance of their distance from a design problem. In this work, the design repository from which analogical stimuli are chosen is the U.S. patent database, a natural choice, as it is one of the largest and easily accessed catalogued databases of inventions. The “near” and “far” analogical stimuli for this study were chosen based on a structure of patents, created using a combination of latent semantic analysis and a Bayesian based algorithm for discovering structural form, resulting in clusters of patents connected by their relative similarity. The findings of this engineering design study are juxtaposed with the findings of a previous study by the authors in design by analogy, which appear to be contradictory when viewed independently. However, by mapping the analogical stimuli used in the earlier work into similar structures along with the patents used in the current study, a relationship between all of the stimuli and their relative distance from the design problem is discovered. The results confirm that “near” and “far” are relative terms, and depend on the characteristics of the potential stimuli. Further, although the literature has shown that “far” analogical stimuli are more likely to lead to the generation of innovative solutions with novel characteristics, there is such a thing as too far. That is, if the stimuli are too distant, they then can become harmful to the design process. Importantly, as well, the data mapping approach to identify analogies works, and is able to impact the effectiveness of the design process. This work has implications not only in the area of finding inspirational designs to use for design by analogy processes in practice, but also for synthesis, or perhaps even unification, of future studies in the field of design by analogy.


2008 ◽  
Vol 16 (3) ◽  
pp. 112-115 ◽  
Author(s):  
Stephan Bongard ◽  
Volker Hodapp ◽  
Sonja Rohrmann

Abstract. Our unit investigates the relationship of emotional processes (experience, expression, and coping), their physiological correlates and possible health outcomes. We study domain specific anger expression behavior and associated cardio-vascular loads and found e.g. that particularly an open anger expression at work is associated with greater blood pressure. Furthermore, we demonstrated that women may be predisposed for the development of certain mental disorders because of their higher disgust sensitivity. We also pointed out that the suppression of negative emotions leads to increased physiological stress responses which results in a higher risk for cardiovascular diseases. We could show that relaxation as well as music activity like singing in a choir causes increases in the local immune parameter immunoglobuline A. Finally, we are investigating connections between migrants’ strategy of acculturation and health and found e.g. elevated cardiovascular stress responses in migrants when they where highly adapted to the German culture.


Sign in / Sign up

Export Citation Format

Share Document