scholarly journals Instructional Demos, In-Class Projects, and Hands-On Homework: Active Learning for Electrical Engineering using the Analog Discovery

2016 ◽  
Author(s):  
Gregory Mazzaro ◽  
Ronald Hayne
Author(s):  
Kathleen M. Hart ◽  
Steven B. Shooter ◽  
Charles J. Kim

Hands-on product dissection and reverse engineering exercises have been shown to have a positive impact on engineering education, and many universities have incorporated such exercises in their curriculum. The CIBER-U project seeks to examine the potential to utilize cyberinfrastructure to enhance these active-learning exercises. We have formulated a framework for product dissection and reverse engineering activity creation to support a more rigorous approach to assessing other exercises for satisfaction of the CIBER-U project goals and adapting the best practices. This framework is driven by the fulfillment of learning outcomes and considers the maturity of students at different levels. Prototype exercises developed with the framework are presented. The approach is sufficiently general that it can be applied to the consideration and adaption of other types of exercises while ensuring satisfaction of the established goals.


Science ◽  
2021 ◽  
Vol 374 (6563) ◽  
pp. 26-30
Author(s):  
Nesra Yannier ◽  
Scott E. Hudson ◽  
Kenneth R. Koedinger ◽  
Kathy Hirsh-Pasek ◽  
Roberta Michnick Golinkoff ◽  
...  
Keyword(s):  

2018 ◽  
Vol 42 (2) ◽  
pp. 182-191 ◽  
Author(s):  
Renee M. McFee ◽  
Andrea S. Cupp ◽  
Jennifer R. Wood

Didactic lectures are prevalent in physiology courses within veterinary medicine programs, but more active learning methods have also been utilized. Our goal was to identify the most appropriate learning method to augment the lecture component of our physiology course. We hypothesized that case-based learning would be well received by students and would be more effective at helping them learn physiological concepts compared with more traditional laboratory exercises. In this study, approximately one-half of the laboratory sessions for the two-semester course were dedicated to traditional hands-on laboratory exercises, whereas the remaining one-half of the sessions were dedicated to case-based exercises. The lecture portion of the course was not altered. Student attitudes were evaluated after each session and at the end of each semester via quantitative and qualitative survey questions. Student performance was evaluated using section exams and end-of-semester posttests. The vast majority of survey responses received were positive for both cased-based activities and traditional hands-on laboratories. In addition, participation in both types of active learning activities, but not lecture, was associated with retention of conceptual knowledge based on student performance between the section exams and posttests ( P < 0.002). These results indicate that both case-based learning and laboratory exercises are beneficial learning activities to incorporate into a lecture-based physiology course. However, positive survey responses were significantly greater following case-based activities vs. traditional hands-on laboratories, and only participation in case-based activities resulted in greater student performance on the posttest ( P < 0.04). Therefore, case-based activities may be the preferred supplemental learning activity for veterinary medical physiology.


2018 ◽  
Vol 15 (1) ◽  
pp. 12-20
Author(s):  
Cleber Augusto Pereira ◽  
Paulo Oliveira ◽  
Manuel J.C.S. Reis

Study of the adoption of non-traditional tools as support for Higher Education curricula in Electrical Engineering and Computers. We highlight the use of blended-learning, interactive and remote virtual laboratories, computer simulation, and methodologies, such as Active Learning and Problem Based Learning and their applications in the curricular units of the course. The study is a literature review with the systematization and presentation of the findings through a conceptual map. We concluded that the initiatives that have resorted to new technologies in engineering degrees, as well as reports of similar experiments on this topic, are reduced, not formalized in curricula, and ad hoc.


2019 ◽  
Vol 6 ◽  
pp. 79-106
Author(s):  
José Roberto Quezada Peña ◽  
Brenda Irla Cardoso Feitosa ◽  
Jefferson William Oliveira

Currently, there is a growing demand for methodologies that best qualify engineering students at universities. These methodologies require a substantial change in Engineering Teaching programs improving or even changing the traditional ways of imparting knowledge to students. In Power Electronics (PE) study the factors that make learning difficult for Electrical Engineering students, in order for them to achieve full understanding of the subjects addressed in a first discipline in this area, are the academic maturity required coupled with their multidisciplinary nature. The problem is aggravated in practical activities, which demand the availability of a laboratory infrastructure with specific characteristics not always available. An alternative for the study of PE, with a more contemporary focus, is to introduce, through a new Instructional Design (ID) Project, not only the incorporation of more Hands-On activities that approach truly meaningful (authentic) contents. But also, new methodologies and technologies to support educational objectives that make full use of Digital Information and Communication Technologies (DICTs).This work proposes to develop and carry out a methodological design of a blended teaching for a power-electronics-based practical training program (PEBPTP) for students of the Electrical Engineering Course of the Federal University of Maranhão in Brazil. The proposed program is mainly based on the use of a digital controller (unified) based on FPGA, developed and realized specifically for control and power inverters study. From controller´s VHDL Code already realized, a Reuse Logic Block is generated (Intellectual Property Core (IP Core)), for use within the LabVIEW FPGA Hardware Description Environment. A Graphical Interface (GUI), more intuitive, and developed from the LabVIEW environment, will support the realization of the PEBPTP, for parameterizing the Controller, and show relevant figures of merit of the performance of the converter being study. The active methodologies, converging with the diverse possibilities of resources of the DICTs, implanted in the classroom, with the adequate contextualization of the specific resources of each area, contribute increasingly to the student being protagonist of their own knowledge construction. Finally is proposed, and in full adherence to a novel trend, that both the PEBPTP and the unified controller previously developed in FPGA are embedded in what is being named Lab-on-a-Chip (LoC). This embedded structure will allow access to the laboratory hands-on program via a web service that uses a fully programmable logic device (PLD) that incorporates an integrated structure known as System-on-a-Chip (SoC). The above proposals and experiences involve the mastery not only of curricular and technological knowledge, inherent to the training of an engineer, but of mainly, the pedagogical technological knowledge and correct use of DICTs. At this point, in particular, is founded our contribution within the context of Engineering Teaching, to advance in the improvement or perhaps in the modification of the "classroom" of engineering courses, which today go beyond the physical space of the university.


Sign in / Sign up

Export Citation Format

Share Document