scholarly journals Software Defined Radio for Digital Signal Processing Related Courses

2016 ◽  
Author(s):  
Patrick Cutno ◽  
Chi-Hao Cheng ◽  
Zhiqiang Wu ◽  
Bin Wang ◽  
Deng Cao
Author(s):  
Oleg V. Vorobyov ◽  
Alexey I. Rybakov

Introduction. The demodulator structure is described and decoding algorithm for signal-code constructions development is presented. The structure and functional description of the developed software (SW), which is designed for the installation of the software-defined radio in the radio stations layout, are presented. The frame structures of the broadcast and half-duplex protocols, modulation/demodulation and subsequent digital signal processing in existing and prospect radio communication systems are considered.Objective. Investigation of modulation/demodulation methods and subsequent digital signal processing along with requirements imposed by them on the network stations equipment and system operation algorithms.Materials and methods. The software for the software-defined radio system layout is developed to demonstrate the reliability and operability of the proposed algorithm and transmission protocol. It can be used to receive and transmit information by using ionospheric reflections. Present design takes into account existing standards and amateur systems such as WinLink and information systems (digital and analog) for the "physical" and "channel" levels.Results. The structure and functional description of the developed software for the software-defined radio system layout are given. The possible realization of the software-defined radio channel for data receiving and transfer by using ionospheric reflections is presented. The results of technical solutions experimental testing are shown. The software can use hardware and software to control the transceiver module, which includes the SunSDR2 transceiver and antenna amplifier.Conclusion. The structure and functional description of the developed software are presented as a result of the software architecture selection and its application investigation. It is concluded that the reliability and operability justification of the proposed algorithm and transmission protocol is relevant in a field of the digital receivers development for communication systems of various purposes. The presented experimental studies data on verification of the proposed algorithm show the feasibility of present solutions on the qualitative utilization of the channel resource by using the described code structure. The present results allow to determine the most appropriate and efficient way of the software development allowing to create a technique that can meet the maximum number of possible assignments of radio access channels.


Author(s):  
Giti Javidi

In this chapter, the author describes a software-defined radio (SDR)/digital signal processing (DSP)-based cognitive system that has been developed based on the universal software radio peripheral (USRP) and the GNU radio software platform to detect satellite signals. The USRP, running Ubuntu operating system, with interchangeable daughterboard, allows for a variety of experimental settings. The USRP Xilinx Vertex 3 FPGA chip can handle C++, Python, and/or VHDL device programming and configuration. The goal is to create a detector in C++ and Python to implement a cognitive system capable of recording the L1 signal from a DirecTV satellite. The GNU radio companion (GRC), an open source for building software defined radio, and Matlab/Simulink logic blocks are used to create the desired flow graph that results in building and generating the detector program. The proposed experiments explore the effects of different detection techniques, and provide some quantitative results on performance improvements via the software-defined radio approach.


2021 ◽  
Vol 13 (9) ◽  
pp. 1613
Author(s):  
Adrià Amézaga ◽  
Carlos López-Martínez ◽  
Roger Jové

This work describes a system-level overview of a multi-frequency GBSAR built around a high performance software defined radio (SDR). The main goal of the instrument is to be employed as a demonstrator and experimental platform for multi-frequency GBSAR campaigns. The system is capable of operating in P, L, C and X-bands, and signal generation and digital signal processing are customizable and reconfigurable through software. An overview of the software and hardware and implementations of the system are presented. The operation of the system is demonstrated with two measuring campaigns showing focused amplitude images at different frequencies. It is shown how the usage of SDR for GBSAR systems is a viable design option.


Sign in / Sign up

Export Citation Format

Share Document