scholarly journals Field Study on the Air-Side Heat Transfer Performance of Copper Finned-Flat Tubes for Heavy-Duty Truck Radiators

2021 ◽  
Vol 39 (5) ◽  
pp. 1451-1459
Author(s):  
Jose Canazas

Heavy-duty truck cooling systems have been given low importance in the enhancement and research of heat transfer performance since off-highway conditions are hard to evaluate in laboratory essays or CFD studies. The present work is performed to evaluate the heat transfer performance of copper finned-flat tubes used in heavy-duty truck radiators. Parameters were measured in the field of two heavy-duty truck engines cooling systems. In both vehicles water is used as the cooling fluid. The results showed that the Air convective heat transfer coefficient and Overall heat transfer coefficient on the air side decreases as the Reynolds Number decreases and increases as passing through the first row to the fourth row. Additionally, the mass air flow and heat transfer rate have very high values in comparison from normal automotive radiators' operative conditions, since heavy-duty truck radiators require a large heat transfer rate. The analysis presented in this paper was used for a heavy-duty truck radiator but can be extended to any equipment with finned flat tubes. A more accurate study should be done considering vibrations and different environmental conditions.

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1065
Author(s):  
Xiuli Liu ◽  
Hua Chen ◽  
Xiaolin Wang ◽  
Gholamreza Kefayati

The condensate on the surface of the minichannel heat exchanger generated during air cooling substantially reduces the heat transfer performance as it works as an evaporator in the air-conditioning system. This has received much attention in scientific communities. In this paper, the effect of operating parameters on the heat transfer performance of a minichannel heat exchanger (MHE) is investigated under an evaporator working condition. An experimental MHE test system is developed for this purpose, and extensive experimental studies are conducted under a wide range of working conditions using the water-cooling method. The inlet air temperature shows a large effect on the overall heat transfer coefficient, while the inlet air relative humidity shows a large effect on the condensate aggregation rate. The airside heat transfer coefficient increases from 66 to 81 W/(m2·K) when the inlet air temperature increases from 30 to 35 °C. While the condensate aggregation rate on the MHE surface increases by up to 1.8 times when the relative humidity increases from 50% to 70%. The optimal air velocity, 2.5 m/s, is identified in terms of the heat transfer rate and airside heat transfer coefficient of the MHE. It is also found that the heat transfer rate and overall heat transfer coefficient increase as the air velocity increases from 1.5 to 2.5 m/s and decreases above 2.5 m/s. Furthermore, a large amount of condensate accumulates on the MHE surface lowering the MHE heat transfer. The inclined installation angle of the MHE in the wind tunnel effectively enhances heat transfer performance on the MHE surface. The experimental results provide useful information for reducing condensate accumulation and enhancing microchannel heat transfer.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohd Seraj ◽  
Syed Mohd Yahya ◽  
Mohd Anas ◽  
Agung Sutrisno ◽  
Mohammad Asjad

PurposeIn the present study, the thermal performance of engine radiator using conventional coolant and nanofluid is determined experimentally for the different flow rates. Further, the study implemented the Integrated Taguchi-GRA-PCA for optimising the heat transfer performance.Design/methodology/approachNanofluids were prepared by taking ethylene glycol and water (25:75 by volume) with volume fraction of 0.01, 0.03 and 0.05% of TiO2 nanopowder. Experimental Data were collected based on the design of experiments (DOE) L9 orthogonal array using Taguchi method. Statistical analysis via Grey relation analysis (GRA) and principal component analysis (PCA) were done to determine the role of experimental parameters on heat transfer coefficient and rate of heat transfer. Impact of three control factors, vol. % of TiO2 concentration (φ), flow rate (LPH), and sonication time (min) on the performance characteristics on heat transfer coefficient and ratio of heat transfer rate is analysed to get the best combination of the parameters involved.FindingsAnalysis revealed the importance of parameters on heat transfer coefficient and can be sorted in terms of contributions from higher to lower degree. Finally, ANOVA test has been conducted to validate the effect of process parameters. The major controllable parameter is φ (concentration), contributing about 32.74%, then flow rate contributing 32.5% and finally sonication time showing small contribution of 18.57%.Originality/valueA grey relational analysis integrated with principal component analyses (PCA) are implemented to get the optimum heat transfer coefficient and ratio of heat transfer rate. The novelty of the work is to adopt and implement the Integrated Taguchi-GRA-PCA first time for the purpose of thermal performance analysis of engine nano-coolant for radiator.


2014 ◽  
Vol 1081 ◽  
pp. 270-274
Author(s):  
Zui Xian Yu ◽  
Xue Sheng Wang ◽  
Qin Zhu Chen

A new preparation technique of carbon steel/stainless steel clad tube was introduced, and the contact surface was well combined. Meanwhile, with the using of tube heat exchanger, the experiment on the heat transfer performance of the clad tube was done. Comparing the 10/316 clad tube and the 316 stainless steel tube, the effects on the heat transfer performance of 316 stainless steel tube attached to carbon steel was evaluated. It is showed that overall heat transfer coefficient of 10/316 clad tubes is higher than that of stainless steel tube. The average heat transfer coefficient of 10/316 clad tubes is about 18.7%~34.4% higher than that of stainless steel tube. Experimental investigation indicates that, by brazing and cold drawing, the 10/316 clad tube was well combined and the thermal conductivity was better than that of stainless steel tube.


2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


Author(s):  
Minghui Hu ◽  
Dongsheng Zhu ◽  
Jialong Shen

It is requested to develop a microscale and high performance heat exchanger for small size energy equipments. The heat transfer performance of the water film on the condensing coils of the microscale evaporative condenser was studied for a single-stage compressed refrigeration cycle system. Under various operation conditions, the effects of the spray density and the head-on air velocity on the heat transfer performance of the water film were investigated. The results show that the microscale heat transfer coefficient of the water film αw increases with the increase of spray density and decreases with the increase of head-on air velocity. The results indicate that the key factor affecting the microscale heat transfer of the water film is the spray density. As the results, it is measured that the present device attained high heat transfer quantity despite the weight is light. In addition, via regression analysis of the experimental data, the correlation equation for calculating the microscale heat transfer coefficient of the water film was obtained, its regression correlation coefficient R is 0.98 and the standard deviation is 7.5%. Finally, the correlations from other works were compared. The results presented that the experimental correlation had better consistency with the correlations from other works. In general, the obtained experimental results of the water film heat transfer are helpful to the design and practical operation of the microscale evaporative condensers.


Author(s):  
Sanskar S. Panse ◽  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract This paper presents heat transfer characteristics of lobed nozzles, three different lobe configurations viz. three-, four- and six-lobe jets have been tested over a range of Reynolds numbers (based on the effective jet diameter, de) between 8000 and 16000 and normalized jet-to-target spacings (z/de) of 1.6, 3.2 and 4.8. The heat transfer results of lobed configurations were compared to the baseline configuration of circular jets. Steady-state infrared thermography (IRT) experiments were carried out for convective heat transfer coefficient calculations. Experimental results show that the three lobe configuration has a superior heat transfer performance compared to other configurations. Jet-to-target plate standoff distance had drastic effect on the heat transfer performance and contour plots for the lobed nozzles, as heat transfer performance diminished with increase in z/de. For the lobe configurations, with increase in jet-to-target spacing (z/de), the heat transfer coefficient maps tend towards a more circular profile due to the effect of jet diffusion.


Author(s):  
Lung-Yi Lin ◽  
Yeau-Ren Jeng ◽  
Chi-Chuan Wang

This study presents convective single-phase and boiling two-phase heat transfer performance of HFE-7100 coolant within multi-port microchannel heat sinks. The corresponding hydraulic diameters are 450 and 237 μm, respectively. For single-phase results, the presence of inlet/outlet locations inevitably gives rise to considerable increase of total pressure drop of a multi-port microchannel heat sink whereas has virtually no detectable influence on overall heat transfer performance provided that the effect of entrance has been accounted for. The convective boiling heat transfer coefficient for the HFE-7100 coolant shows a tremendous drop when vapor quality is above 0.6. For Dh = 450 μm, it is found that the mass flux effect on the convective heat transfer coefficient is rather small.


2020 ◽  
Vol 10 (4) ◽  
pp. 1255
Author(s):  
Liping Zeng ◽  
Xing Liu ◽  
Quan Zhang ◽  
Jun Yi ◽  
Xiaohua Li ◽  
...  

This paper mainly studies the heat transfer performance of backplane micro-channel heat pipes by establishing a steady-state numerical model. Compared with the experimental data, the heat transfer characteristics under different structure parameters and operating parameters were studied, and the change of heat transfer coefficient inside the system, the air outlet temperature of the back plate and the influence of different environmental factors on the heat transfer performance of the system were analyzed. The results show that the overall error between simulation results and experimental data is less than 10%. In the range of the optimal filling rate (FR = 64.40%–73.60%), the outlet temperature at the lowest point and the highest point of the evaporation section is 22.46 °C and 19.60 °C, the temperature difference does not exceed 3 °C, and the distribution gradient in vertical height is small and the air outlet temperature is uniform. The heat transfer coefficient between the evaporator and the condenser is larger than the heat transfer coefficient under the conditions of low and high liquid charge rate. It increases gradually along the flow direction, and decreases gradually with the flow rate of the condenser. When the width of the flat tube of the evaporator increases from 20 mm to 28 mm, the internal pressure drop of the evaporator decreases by 45.83% and the heat exchange increases by 18.34%. When the number of evaporator slices increases from 16 to 24, the heat transfer increases first and then decreases, with an overall decrease of 2.86% and an increase of 87.67% in the internal pressure drop of the evaporator. The inclination angle of the corrugation changes from 30° to 60°, and the heat transfer capacity and pressure drop increase. After the inclination angle is greater than 60°, the heat transfer capacity and resistance decrease. The results are of great significance to system optimization design and engineering practical application.


2015 ◽  
Vol 1779 ◽  
pp. 39-44 ◽  
Author(s):  
Jan Mary Baloyo ◽  
Yuyuan Zhao

ABSTRACTThe heat transfer coefficients of homogeneous and hybrid micro-porous copper foams, produced by the Lost Carbonate Sintering (LCS) process, were measured under one-dimensional forced convection conditions using water coolant. In general, increasing the water flow rate led to an increase in the heat transfer coefficients. For homogeneous samples, the optimum heat transfer performance was observed for samples with 60% porosity. Different trends in the heat transfer coefficients were found in samples with hybrid structures. Firstly, for horizontal bilayer structures, placing the high porosity layer by the heater gave a higher heat transfer coefficient than the other way round. Secondly, for integrated vertical bilayer structures, having the high porosity layer by the water inlet gave a better heat transfer performance. Lastly, for segmented vertical bilayer samples, having the low porosity layer by the water inlet offered the greatest heat transfer coefficient overall, which is five times higher than its homogeneous counterpart.


2013 ◽  
Vol 441 ◽  
pp. 112-115 ◽  
Author(s):  
Qing Jiang Liu ◽  
Fang Han

In order to study the effect on heat transfer performance of evaporator in the gravity feed liquid refrigeration system the different evaporator area, the simulation procedure is worked out. The procedure uses the visual basic language. The procedure can figure out the heat transfer coefficient and the temperature difference in different evaporator area and evaporating temperature with the required refrigerating capacity. Through simulation calculation, when the area is 80% of the original design area of evaporator, the evaporator of the heat transfer coefficient and heat transfer temperature difference is the most reasonable and the evaporator of the refrigerating capacity can meet the requirements of cold storage. The program provides the reliable data for the gravity feed liquid cooling system optimization.


Sign in / Sign up

Export Citation Format

Share Document