scholarly journals A Target Tracking Model for Enterprise Production Monitoring System Based on Spatial Information and Appearance Model

2019 ◽  
Vol 36 (4) ◽  
pp. 369-375 ◽  
Author(s):  
Xun Li ◽  
Chuan Lin ◽  
Xinpeng Xu
Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 750 ◽  
Author(s):  
Maryamsadat Rasoulidanesh ◽  
Srishti Yadav ◽  
Sachini Herath ◽  
Yasaman Vaghei ◽  
Shahram Payandeh

Visual tracking performance has long been limited by the lack of better appearance models. These models fail either where they tend to change rapidly, like in motion-based tracking, or where accurate information of the object may not be available, like in color camouflage (where background and foreground colors are similar). This paper proposes a robust, adaptive appearance model which works accurately in situations of color camouflage, even in the presence of complex natural objects. The proposed model includes depth as an additional feature in a hierarchical modular neural framework for online object tracking. The model adapts to the confusing appearance by identifying the stable property of depth between the target and the surrounding object(s). The depth complements the existing RGB features in scenarios when RGB features fail to adapt, hence becoming unstable over a long duration of time. The parameters of the model are learned efficiently in the Deep network, which consists of three modules: (1) The spatial attention layer, which discards the majority of the background by selecting a region containing the object of interest; (2) the appearance attention layer, which extracts appearance and spatial information about the tracked object; and (3) the state estimation layer, which enables the framework to predict future object appearance and location. Three different models were trained and tested to analyze the effect of depth along with RGB information. Also, a model is proposed to utilize only depth as a standalone input for tracking purposes. The proposed models were also evaluated in real-time using KinectV2 and showed very promising results. The results of our proposed network structures and their comparison with the state-of-the-art RGB tracking model demonstrate that adding depth significantly improves the accuracy of tracking in a more challenging environment (i.e., cluttered and camouflaged environments). Furthermore, the results of depth-based models showed that depth data can provide enough information for accurate tracking, even without RGB information.


2013 ◽  
Vol 683 ◽  
pp. 824-827
Author(s):  
Tian Ding Chen ◽  
Chao Lu ◽  
Jian Hu

With the development of science and technology, target tracking was applied to many aspects of people's life, such as missile navigation, tanks localization, the plot monitoring system, robot field operation. Particle filter method dealing with the nonlinear and non-Gaussian system was widely used due to the complexity of the actual environment. This paper uses the resampling technology to reduce the particle degradation appeared in our test. Meanwhile, it compared particle filter with Kalman filter to observe their accuracy .The experiment results show that particle filter is more suitable for complex scene, so particle filter is more practical and feasible on target tracking.


Author(s):  
Hongpo Fu ◽  
Yongmei Cheng ◽  
Cheng Cheng

Abstract In the nonlinear state estimation, the generation method of cubature points and weights of the classical cubature Kalman filter (CKF) limits its estimation accuracy. Inspired by that, in this paper, a novel improved CKF with adaptive generation of the cubature points and weights is proposed. Firstly, to improve the accuracy of classical CKF while considering the calculation efficiency, we introduce a new high-degree cubature rule combining third-order spherical rule and sixth-degree radial rule. Next, in the new cubature rule, a novel method that can generate adaptively cubature points and weights based on the distance between the points and center point in the sense of the inner product is designed. We use the cosine similarity to quantify the distance. Then, based on that, a novel high-degree CKF is derived that use much fewer points than other high-degree CKF. In the proposed filter, based on the actual dynamic filtering process, the simultaneously adaptive generation of cubature points and weight can make the filter reasonably distribute the cubature points and allocate the corresponding weights, which can obviously improve the approximate accuracy of one-step state and measurement prediction. Finally, the superior performance of the proposed filter is demonstrated in a benchmark target tracking model.


Sign in / Sign up

Export Citation Format

Share Document