scholarly journals Analytical determination of motion parameters of the center of mass of an uncooperative orbiter on the basis of measurement information provided by on-board systems of a space robot in a coplanar orbit

2019 ◽  
Vol 18 (3) ◽  
pp. 7-15
Author(s):  
V. M. Ananenko ◽  
A. D. Golyakov ◽  
P. V. Kalabin

An analytical solution to the problem of determining the parameters of motion of an orbiter’s center of mass is presented on the basis on the results of measurements carried out using the optical system of a space robot located in orbit coplanar to that of the orbiter. The “space robot-orbiter” line-of-sight angle and the line-of-sight rate in the moving orbital system of coordinates of the space robot are selected as initial parameters that are measured by the space robot’s on-board optical system. Along with the known orbital parameters of the space robot they are used to solve the problem of determining the parameters of motion of the orbiter’s center of mass. When solving this task, assumptions are introduced concerning the central gravitational field of the Earth, the coplanarity of the orbits of the space robot and of the orbiter, absence of influence of the atmosphere, the moon's attraction and the pressure of the solar wind on the motion of the space robot and of the orbiter, absence of errors in the results of measurements performed by the space robot’s on-board optics. Analytical expressions are obtained to determine the unknown parameters of motion of the orbiter’s center of mass. The results presented can be used to develop methods allowing standalone determination of parameters of the orbit of unknown orbiters using on-board optics of a space robot.

Author(s):  
B. Roy Frieden

Despite the skill and determination of electro-optical system designers, the images acquired using their best designs often suffer from blur and noise. The aim of an “image enhancer” such as myself is to improve these poor images, usually by digital means, such that they better resemble the true, “optical object,” input to the system. This problem is notoriously “ill-posed,” i.e. any direct approach at inversion of the image data suffers strongly from the presence of even a small amount of noise in the data. In fact, the fluctuations engendered in neighboring output values tend to be strongly negative-correlated, so that the output spatially oscillates up and down, with large amplitude, about the true object. What can be done about this situation? As we shall see, various concepts taken from statistical communication theory have proven to be of real use in attacking this problem. We offer below a brief summary of these concepts.


Author(s):  
Fumio Watari ◽  
J. M. Cowley

STEM coupled with the optical system was used for the investigation of the early oxidation on the surface of Cr. Cr thin films (30 – 1000Å) were prepared by evaporation onto the polished or air-cleaved NaCl substrates at room temperature and 45°C in a vacuum of 10−6 Torr with an evaporation speed 0.3Å/sec. Rather thick specimens (200 – 1000Å) with various preferred orientations were used for the investigation of the oxidation at moderately high temperature (600 − 1100°C). Selected area diffraction patterns in these specimens are usually very much complicated by the existence of the different kinds of oxides and their multiple twinning. The determination of the epitaxial orientation relationship of the oxides formed on the Cr surface was made possible by intensive use of the optical system and microdiffraction techniques. Prior to the formation of the known rhombohedral Cr2O3, a thin spinel oxide, probably analogous to γ -Al203 or γ -Fe203, was formed. Fig. 1a shows the distinct epitaxial growth of the spinel (001) as well as the rhombohedral (125) on the well-oriented Cr(001) surface. In the case of the Cr specimen with the (001) preferred orientation (Fig. 1b), the rings explainable by spinel structure appeared as well as the well defined epitaxial spots of the spinel (001). The microdif fraction from 20A areas (Fig. 2a) clearly shows the same pattern as Fig. Ia with the weaker oxide spots among the more intense Cr spots, indicating that the thickness of the oxide is much less than that of Cr. The rhombohedral Cr2O3 was nucleated preferably at the Cr(011) sites provided by the polycrystalline nature of the present specimens with the relation Cr2O3 (001)//Cr(011), and by further oxidation it grew into full coverage of the rest of the Cr surface with the orientation determined by the initial nucleation.


2020 ◽  
Vol 50 (5) ◽  
pp. 347-350
Author(s):  
G. M. Druzhinin ◽  
N. B. Loshkarev ◽  
E. D. Solntseva ◽  
I. M. Khammatov

Sign in / Sign up

Export Citation Format

Share Document