moderately high temperature
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 852
Author(s):  
Nobutoshi Yamaguchi ◽  
Toshiro Ito

Exposure to moderately high temperature enables plants to acquire thermotolerance to high temperatures that might otherwise be lethal. In Arabidopsis thaliana, histone H3 lysine 27 trimethylation (H3K27me3) at the heat shock protein 17.6C (HSP17.6C) and HSP22 loci is removed by Jumonji C domain-containing protein (JMJ) histone demethylases, thus allowing the plant to ‘remember’ the heat experience. Other heat memory genes, such as HSP21, are downregulated in acclimatized jmj quadruple mutants compared to the wild type, but how those genes are regulated remains uncharacterized. Here, we show that histone H3 lysine 4 trimethylation (H3K4me3) at HSP21 was maintained at high levels for at least three days in response to heat. This heat-dependent H3K4me3 accumulation was compromised in the acclimatized jmj quadruple mutant as compared to the acclimatized wild type. JMJ30 directly bound to the HSP21 locus in response to heat and coordinated H3K27me3 and H3K4me3 levels under standard and fluctuating conditions. Our results suggest that JMJs mediate the balance between H3K27me3 and H3K4me3 at the HSP21 locus through proper maintenance of H3K27me3 removal during heat acclimation.


2019 ◽  
Vol 46 (6) ◽  
pp. 555 ◽  
Author(s):  
Milena T. Gerganova ◽  
Aygyun K. Faik ◽  
Maya Y. Velitchkova

The kinetics of photoinhibition in detached leaves from tomato plants (Solanium lycopersicum L. cv. M82) grown for 6 days under different combinations of optimal and moderately high temperature and optimal and high light intensity were studied. The inhibition of PSII was evaluated by changes in maximal quantum yield, the coefficient of photochemical quenching and the quantum yield of PSII. The changes of PSI activity was estimated by the redox state of P700. The involvement of different possible protective processes was checked by determination of nonphotochemical quenching and cyclic electron flow around PSI. To evaluate to what extent the photosynthetic apparatus and its response to high light treatment was affected by growth conditions, the kinetics of photoinhibition in isolated thylakoid membranes were also studied. The photochemical activities of both photosystems and changes in the energy distribution and interactions between them were evaluated by means of a Clark electrode and 77 K fluorescence analysis. The data showed an increased tolerance to photoinhibition in plants grown under a combination of moderately high temperature and light intensity, which was related to the stimulation of cyclic electron flow, PSI activity and rearrangements of pigment–protein complexes, leading to a decrease in the excitation energy delivered to PSII.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 165 ◽  
Author(s):  
Ning Yan ◽  
Yongmei Du ◽  
Hongbo Zhang ◽  
Zhongfeng Zhang ◽  
Xinmin Liu ◽  
...  

Solanesol is a terpene alcohol composed of nine isoprene units that mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum). The present study aimed to investigate the regulation of solanesol accumulation in tobacco leaves induced by moderately high temperature (MHT). Exposure to MHT resulted in a significant increase in solanesol content, dry weight, and net photosynthetic rate in tobacco leaves. In MHT-exposed tobacco leaves, 492 and 1440 genes were significantly up- and downregulated, respectively, as revealed by RNA-sequencing. Functional enrichment analysis revealed that most of the differentially expressed genes (DEGs) were mainly related to secondary metabolite biosynthesis, metabolic pathway, carbohydrate metabolism, lipid metabolism, hydrolase activity, catalytic activity, and oxidation-reduction process. Moreover, 122 transcription factors of DEGs were divided into 22 families. Significant upregulation of N. tabacum 3-hydroxy-3-methylglutaryl-CoA reductase (NtHMGR), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (NtDXR), geranylgeranyl diphosphate synthase (NtGGPS), and solanesyl diphosphate synthase (NtSPS) and significant downregulation of N. tabacum 1-deoxy-d-xylulose 5-phosphate synthase (NtDXS) and farnesyl diphosphate synthase (NtFPS) transcription upon MHT exposure were monitored by quantitative real-time PCR (qRT-PCR). This study indicated that solanesol accumulation in tobacco leaves can be manipulated through regulation of the environmental temperature and established a basis for further elucidation of the molecular mechanism of temperature regulation of solanesol accumulation.


Sign in / Sign up

Export Citation Format

Share Document