scholarly journals PRESSURE OSCILLATIONS IN TRANSIENT PROCESSES OF HYDRAULIC SYSTEMS WITH VARIABLE DISPLACEMENT PUMPS

2015 ◽  
Vol 65 (4) ◽  
Author(s):  
Hennadii Zaionchkovskyi ◽  
Volodymur Butko ◽  
Taras Tarasenko
Author(s):  
Perry Y. Li ◽  
Cassie Y. Li ◽  
Thomas R. Chase

Direct pump control of hydraulic systems is more energy efficient than throttle valve based methods to control hydraulic systems. This requires variable displacement pumps that are responsive and capable of electronic control. Such Electronic Displacement Controlled (EDC) pumps tend to be significantly larger, heavier and more expensive than fixed displacement counterparts. In addition, achievable control bandwidths are typically lower than throttle valve based control approaches. We have recently begun a project to achieve the functionality of a variable displacement pump by combining a fixed displacement pump, a pulse width modulated (PWM) on/off valve under closed loop feedback control, and an accumulator. The proposed topology is the hydro-mechanical analog of the DC-DC boost converter in power electronics. Since on/off valves have little loss in either the on or the off state, this approach is potentially more efficient than throttle valve based control approaches. It has the small size/weight and low cost advantages of a fixed displacement pump. Faster response can be expected by eliminating the intervening inertias of the swash plate control system. The pump’s functionalities can also be easily programmed by controlling the PWM on/off valve in different manners. This paper presents some preliminary results from this ongoing research program. While the PWM valve based approach provides desirable features, it also introduces undesirable ripples to the system pressure and flow rate. It is shown that increasing the accumulator pre-charge pressure and the accumulator volume can decrease ripple size at the expense of response time. This apparent trade-off can be alleviated by feedback control to achieve fast response time while keeping ripple small. Feedback control using PWM control must be implemented with care since the conventional “state-space” model may not be valid when the PWM frequency is low. On the other hand, increasing PWM frequency reduces ripple size and enables the system to achieve high control bandwidths.


2016 ◽  
Author(s):  
◽  
Julie Kay Wisch

This project developed the inlet metering system. An inlet metering system represents a new option in hydraulic pump design. Traditional pressure controlled hydraulic pumps rely on either swashplate displacement (for variable displacement pumps) or bleed off valves (for fixed displacement pumps). Variable displacement pumps require mechanically complex parts which are expensive to machine and prone to break down. Bleed off valves represent a significant loss in system efficiency. In contrast, the inlet metering system is able to make use of a fixed displacement pump (which is relatively inexpensive and mechanically robust) and a two-way spool valve. This dissertation goes through the process of designing the valve and pump dimensions, presents a theoretical dynamic analysis, studies the control law associated with this pump, and examines the energy requirements associated with inlet metering system operation. A prototype of the design was constructed and experimental data was used to validate the efficiency analysis. The major finding associated with this work was that the inlet metering system can be designed to display a first order pressure response. This means that when the inlet metering system is operated, the actual pressure in the system will never exceed the desired pressure. In contrast, traditional hydraulic systems will display up to 60% pressure overshoot, meaning the systems must be designed to handle pressures significantly greater than operating pressures. Additionally it was found that the inlet metering system is more efficient than using a bleed off valve, but less efficient than using a variable displacement pump.


10.14311/1576 ◽  
2012 ◽  
Vol 52 (4) ◽  
Author(s):  
Daniel Banyai ◽  
Lucian Marcu

Due to the advantages of hydraulic systems with variable displacement, it was necessary to design a control system that can adjust the pressure, flow, power or a combination of these features, that can be easily integrated into the pump body without changing its mechanical construction. The objective of this work was to study the dynamic behavior of this electro-hydraulic control system. To achieve these objectives, first the adjusting system was analyzed by numerical simulations, and then a stand was constructed for testing the performance of these adjustable pumps. It was shown that this control system is superior to existing systems.


Author(s):  
Yapeng Xu ◽  
Kai Guo ◽  
Jianfeng Li ◽  
Keyu Wang

In this paper, the load torque on the swashplate of axial piston variable displacement pumps with conical cylinder blocks is studied. At present, general analytical solution for the load torque of axial piston variable displacement pump is not available, which makes the dynamic analysis and controller design an uneasy work. The main contribution of this paper is that the analytical solution of the swashplate torque caused by piston inertia and centrifugal force was derived. First, based on the piston acceleration and centrifugal force, the piston kinematic and dynamic models were developed, the analytical solution of the swashplate torque caused by piston inertia and centrifugal force was derived. In addition, the piston chamber pressure dynamics were established, the pressure distribution in the cylinder bore and the load torque of the swashplate under different working conditions were obtained. Finally, the relationship between the swashplate average load torque and the swashplate angle, swashplate angular velocity, pump load pressure and the pump input shaft velocity was uncovered. It is shown that the swashplate angle has greater influence on the load torque when the pump load pressure is higher, besides, it is interesting to observe that the swashplate angular velocity has a damping influence upon swashplate dynamics which helps to stabilize the swashplate during pump displacement regulation transients.


Author(s):  
Michael B. Rannow ◽  
Haink C. Tu ◽  
Perry Y. Li ◽  
Thomas R. Chase

The majority of hydraulic systems are controlled using a metering valve or the use of variable displacement pumps. Metering valve control is compact and has a high control bandwidth, but it is energy inefficient due to throttling losses. Variable displacement pumps are far more efficient as the pump only produces the required flow, but comes with the cost of additional bulk, sluggish response, and added cost. In a previous paper [1], a hydromechanical analog of an electronic switch-mode power supply was proposed to create the functional equivalent of a variable displacement pump. This approach combines a fixed displacement pump with a pulse-width-modulated (PWM) on/off valve, a check valve, and an accumulator. The effective pump displacement can be varied by adjusting the PWM duty ratio. Since on/off valves exhibit low loss when fully open or fully closed, the proposed system is potentially more energy efficient than metering valve control, while achieving this efficiency without many of the shortcomings of traditional variable displacement pumps. The system also allows for a host of programmable features that can be implemented via control of the PWM duty ratio. This paper presents initial experimental validation of the concept as well as an investigation of the system efficiency. The experimental apparatus was built using available off-the-shelf components and uses a linear proportional spindle valve as the PWM valve. Experimental results confirm that the proposed approach can achieve variable control function more efficiently than a valve controlled system, and that by increasing the PWM frequency and adding closed-loop control can decrease system response times and of the output ripple magnitude. Sources of inefficiency and their contributions are also investigated via modeling, simulation and are validated by experiments. These indicate design parameters for improving inefficiency.


2001 ◽  
Author(s):  
Hongliu Du

Abstract In this paper, a novel E/H control design is proposed for displacement and power control of hydraulic variable displacement pumps. The displacement control is treated as tracking the desired swashplate angle time history αd(t) with the consideration of system uncertainties. The robust stability of the control system is achieved by a very rugged control design. The resulting error dynamics is of first order, which guarantees no overshoot for step response. An adaptive term is added to further improve the system performance. The smooth transfers between the displacement control and power control modes are achieved. The provided control design significantly simplifies the hydro-mechanical design for variable displacement pumps and results in a cost reduced pump with a better performance. Experimental results validate the theoretical development.


Sign in / Sign up

Export Citation Format

Share Document