scholarly journals 7-Deazapurine 2'-deoxyribofuranosides are noncleavable competitive inhibitors of Escherichia coli purine nucleoside phosphorylase (PNP).

1998 ◽  
Vol 45 (3) ◽  
pp. 755-768 ◽  
Author(s):  
A Bzowska ◽  
Z Kazimierczuk ◽  
F Seela

A series of 7-deazapurine 2'-deoxyribofuranosides were synthesized according to already known procedures and their substrate and inhibitor properties with purified E. coli purine nucleoside phosphorylase were examined. In agreement with previous findings, substrate activity was not detected for any of the compounds tested. Most of the nucleosides showed weak inhibition in the preliminary screening, i.e. at a concentration of about 100 microM. However some combinations of 6-chloro, 6-amino or 6-methoxy substituents with bulky hydrophobic groups at position 7 of the base and/or chloro, amino, methoxy or methylthio group at position 2 markedly enhanced affinity of such modified nucleosides for the E. coli enzyme. The most potent inhibition was observed for two nucleosides: 6-chloro- and 2-amino-6-chloro-7-deazapurine 2'-deoxyribofuranosides that show inhibition constants Ki = 2.4 and 2.3 microM, respectively. Several other compounds were also found to be good inhibitors, with inhibition constants in the range 5-50 microM. In all instances the inhibition was competitive vs. the nucleoside substrate 7-methylguanosine. Inhibition constants for 7-deazapurine nucleosides are in general several-fold lower than those observed for their purine counterparts. Therefore 7-deaza modification together with substitutions at positions 2, 6 and 7 of the base is a very promising approach to obtain competitive noncleavable inhibitors of E. coli PNP that may bind to the enzyme with inhibition constants in the microM range.

1990 ◽  
Vol 45 (1-2) ◽  
pp. 59-70 ◽  
Author(s):  
Agnieszka Bzowska ◽  
Ewa Kulikowska ◽  
David Shugar

Purine nucleoside phosphorylase (PNP), from calf spleen, human erythrocytes and E. coli have been examined with regard to structural requirements of substrates and inhibitors. Kinetic parameters (Km, Vmax/Km) for a variety of N(1) and/or N(7)-methylated analogues of guanosine, inosine and adenosine have been evaluated for all three enzym es. The substrate and/or inhibitor properties of purine riboside, 1,6-dihydropurine riboside, some deazapurine nucleosides: 3-deaza- and 7-deazainosine, 1,3-dideazapurine riboside (ribobenzimidazole), and a variety of acyclonu cleosides, have been determined with mammalian and bacterial enzymes. Overall results indicate distinct similarities of kinetic properties and structural requirements of the two mammalian enzymes, although there are some differences as well. The N(1) and O6 of the purine ring are necessary for substrate-inhibitor activity and constitute a binding site for the mammalian (but not the bacterial) enzymes. Moreover, nucleosides lacking the N(3) undergo phosphorolysis and those lacking N(7) are inhibitors (but not substrates). Methylation of the ring N(7) leads to two overlapping effects: labilization of the glycosidic bond, and impediment to proton ation at this site by the enzyme, a postulated prerequisite for enzymatic phosphorolysis. It is proposed that a histidine interacts with N(1) as a don or and O6 as an acceptor. Alternatively N(1)−H and C(2)−NH2, may serve as donors for hydrogen bonds with a glutam ate residue. The less specific E. coli enzyme phosphorolyses all purine ring modified nucleosides but 7-deazainosine which is only an inhibitor. On the other hand, the bacterial enzyme exhibits decreased activity towards N(7)-methylated nucleosides and lack of affinity for a majority of the tested acyclonu cleoside inhibitors of the mammalian enzymes. The foregoing results underline the fundamental differences between mammalian and bacterial enzymes, including variations in the binding sites for the purine ring.


1999 ◽  
Vol 54 (12) ◽  
pp. 1055-1067 ◽  
Author(s):  
Agnieszka Bzowska ◽  
Lucyna Magnowska ◽  
Zygmunt Kazimierczuk

The phase transfer method was applied to perform the nucleophilic substitution of 2,6- dichloropurines by modified arylalkyl alcohol or phenols. Since under these conditions only the 6-halogen is exchanged, this method gives 2-chloro-6-aryloxy- and 2-chloro-6-arylalkoxypurines. 2-Chloro-6-benzylthiopurine was synthesized by alkylation of 2-chloro-6-thiopurine with benzyl bromide. The stereoisomers of 2-chloro-6-(1-phenyl-1-ethoxy)purine were obtained from R- and S-enantiomers of sec.-phenylethylalcohol and 2,6-dichloropurine. All derivatives were tested for inhibition with purified hexameric E. coli purine nucleoside phosphorylase (PNP). For analogues showing IC50 < 10 μm, the type of inhibition and inhibition constants were determined. In all cases the experimental data were best described by the mixed-type inhibition model and the uncompetitive inhibition constant, Kiu, was found to be several-fold lower than the competitive inhibition constant, Kic. This effect seems to be due to the 6-aryloxy- or 6-arylalkoxy substituent, because a natural PNP substrate adenine, as well as 2-chloroadenine, show mixed type inhibition with almost the same inhibition constants Kiu and KiC. The most potent inhibition was observed for 6-benzylthio-2-chloro-, 6-benzyloxy-2-chloro-, 2-chloro-6-(2-phenyl-l-ethoxy), 2-chloro-6-(3-phenyl-l-propoxy)- and 2-chloro-6-ethoxypurines (Kiu = 0.4, 0.6, 1.4, 1.4 and 2.2 μm, respectively). The R-stereoisomer of 2-chloro-6-(1pheny-1-ethoxy)purine has Kiu = 2.0 μm, whereas inhibition of its S counterpart is rather weak (IC50> 12 μm). More rigid (e.g. phenoxy-), non-planar (cyclohexyloxy-), or more bulky (2,4,6-trimethylphenoxy-) substituents at position 6 of the purine base gave less potent inhibitors (IC50 = 26, 56 and >100 μm, respectively). The derivatives are selective inhibitors of hexameric “high-molecular mass” PNPs because no inhibitory activity vs. trimeric Cellulomonas sp. PNP was detected. By establishing the ligand-dependent stabilization pattern of the E. coli PNP it was shown that the new derivatives, similarly as the natural purine bases, are able to form a dead-end ternary complex with the enzyme and orthophosphate. It was also shown that the derivatives are substrates in the reverse synthetic direction catalyzed by E. coli PNP


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 539
Author(s):  
Alexey L. Kayushin ◽  
Julia A. Tokunova ◽  
Ilja V. Fateev ◽  
Alexandra O. Arnautova ◽  
Maria Ya. Berzina ◽  
...  

During the preparative synthesis of 2-fluorocordycepin from 2-fluoroadenosine and 3′-deoxyinosine catalyzed by E. coli purine nucleoside phosphorylase, a slowdown of the reaction and decrease of yield down to 5% were encountered. An unknown nucleoside was found in the reaction mixture and its structure was established. This nucleoside is formed from the admixture of 2′,3′-anhydroinosine, a byproduct in the preparation of 3-′deoxyinosine. Moreover, 2′,3′-anhydroinosine forms during radical dehalogenation of 9-(2′,5′-di-O-acetyl-3′-bromo- -3′-deoxyxylofuranosyl)hypoxanthine, a precursor of 3′-deoxyinosine in chemical synthesis. The products of 2′,3′-anhydroinosine hydrolysis inhibit the formation of 1-phospho-3-deoxyribose during the synthesis of 2-fluorocordycepin. The progress of 2′,3′-anhydroinosine hydrolysis was investigated. The reactions were performed in D2O instead of H2O; this allowed accumulating intermediate substances in sufficient quantities. Two intermediates were isolated and their structures were confirmed by mass and NMR spectroscopy. A mechanism of 2′,3′-anhydroinosine hydrolysis in D2O is fully determined for the first time.


Sign in / Sign up

Export Citation Format

Share Document