scholarly journals The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis.

2003 ◽  
Vol 50 (2) ◽  
pp. 389-404 ◽  
Author(s):  
Mikhail Y Vyssokikh ◽  
Dieter Brdiczka

The outer mitochondrial membrane pore (VDAC) changes its structure either voltage-dependently in artificial membranes or physiologically by interaction with the adenine nucleotide translocase (ANT) in the c-conformation. This interaction creates contact sites and leads in addition to a specific organisation of cytochrome c in the VDAC-ANT complexes. The VDAC structure that is specific for contact sites generates a signal at the surface for several proteins in the cytosol to bind with high capacity, such as hexokinase, glycerol kinase and Bax. If the VDAC binding site is not occupied by hexokinase, the VDAC-ANT complex has two critical qualities: firstly, Bax gets access to cytochrome c and secondly the ANT is set in its c-conformation that easily changes conformation into an unspecific channel (uniporter) causing permeability transition. Activity of bound hexokinase protects against both, it hinders Bax binding and employs the ANT as anti-porter. The octamer of mitochondrial creatine kinase binds to VDAC from the inner surface of the outer membrane. This firstly restrains interaction between VDAC and ANT and secondly changes the VDAC structure into low affinity for hexokinase and Bax. Cytochrome c in the creatine kinase complex will be differently organised, not accessible to Bax and the ANT is run as anti-porter by the active creatine kinase octamer. However, when, for example, free radicals cause dissociation of the octamer, VDAC interacts with the ANT with the same results as described above: Bax-dependent cytochrome c release and risk of permeability transition pore opening.

1999 ◽  
Vol 147 (7) ◽  
pp. 1493-1502 ◽  
Author(s):  
Manuel K.A. Bauer ◽  
Alexis Schubert ◽  
Oliver Rocks ◽  
Stefan Grimm

Here, we describe the isolation of adenine nucleotide translocase-1 (ANT-1) in a screen for dominant, apoptosis-inducing genes. ANT-1 is a component of the mitochondrial permeability transition complex, a protein aggregate connecting the inner with the outer mitochondrial membrane that has recently been implicated in apoptosis. ANT-1 expression led to all features of apoptosis, such as phenotypic alterations, collapse of the mitochondrial membrane potential, cytochrome c release, caspase activation, and DNA degradation. Both point mutations that impair ANT-1 in its known activity to transport ADP and ATP as well as the NH2-terminal half of the protein could still induce apoptosis. Interestingly, ANT-2, a highly homologous protein could not lead to cell death, demonstrating the specificity of the signal for apoptosis induction. In contrast to Bax, a proapoptotic Bcl-2 gene, ANT-1 was unable to elicit a form of cell death in yeast. This and the observed repression of apoptosis by the ANT-1–interacting protein cyclophilin D suggest that the suicidal effect of ANT-1 is mediated by specific protein–protein interactions within the permeability transition pore.


2000 ◽  
Vol 348 (2) ◽  
pp. 343-350 ◽  
Author(s):  
Elena DORAN ◽  
Andrew P. HALESTRAP

Percoll-purified rat liver mitochondria were shown to contain BAX dimer and rapidly (< 2 min) release 5-10% of their cytochrome c when incubated in a standard KCl incubation medium under energized conditions. This release was not accompanied by release of adenylate kinase (AK), another intermembrane protein, and was not inhibited by Mg2+, dATP, inhibitors of the permeability transition or ligands of the peripheral benzodiazepine receptor. However, release was greatly reduced by the presence of 5% (w/v) dextran (40 kDa), which caused a decrease in the light scattering (A520) of mitochondrial suspensions. Dextran also inhibited both mitochondrial oxidation of exogenous ferrocytochrome c in the presence of rotenone and antimycin, and respiratory-chain-driven reduction of exogenous ferricytochrome c. Hypo-osmotic medium or digitonin treatment of mitochondria caused a large additional release of both cytochrome c and AK that was not blocked by dextran. Polyaspartate, which stabilizes the low conductance state of the voltage-dependent anion channel (VDAC), increased cytochrome c release. VDAC and BAX are both found at the contact sites between the inner and outer membranes and dextran is known to stabilize these contact sites in isolated mitochondria. Thus our data suggest that regulation of a specific permeability pathway for cytochrome c may be mediated by changes in protein-protein interactions within contact sites. The adenine nucleotide translocase is known to bind to VDAC and thus provides an additional link between the specific cytochrome c release pathway and the permeability transition.


2013 ◽  
Vol 104 (2) ◽  
pp. 656a ◽  
Author(s):  
Shamim Naghdi ◽  
Peter Varnai ◽  
Soumya Sinha Roy ◽  
Laszlo Hunyady ◽  
Gyorgy Hajnoczky

1999 ◽  
Vol 66 ◽  
pp. 167-179 ◽  
Author(s):  
Martin Crompton ◽  
Sukaina Virji ◽  
Veronica Doyle ◽  
Nicholas Johnson ◽  
John M. Ward

This chapter reviews recent advances in the identification of the structural elements of the permeability transition pore. The discovery that cyclosporin A (CsA) inhibits the pore proved instrumental. Various approaches indicate that CsA blocks the pore by binding to cyclophilin (CyP)-D. In particular, covalent labelling of CyP-D in situ by a photoactive CsA derivative has shown that pore ligands have the same effects on the degree to which CsA both blocks the pore and binds to CyP-D. The recognition that CyP-D is a key component has enabled the other constituents to be resolved. Use of a CyP-D fusion protein as affinity matrix has revealed that CyP-D binds very strongly to 1:1 complexes of the voltage-dependent anion channel (from the outer membrane) and adenine nucleotide translocase (inner membrane). Our current model envisages that the pore arises as a complex between these three components at contact sites between the mitochondrial inner and outer membranes. This is in line with recent reconstitutions of pore activity from protein fractions containing these proteins. The strength of interaction between these proteins suggests that it may be a permanent feature rather than assembled only under pathological conditions. Calcium, the key activator of the pore, does not appear to affect pore assembly; rather, an allosteric action allowing pore flicker into an open state is indicated. CsA inhibits pore flicker and lowers the binding affinity for calcium. Whether adenine nucleotide translocase or the voltage-dependent anion channel (via inner membrane insertion) provides the inner membrane pore has not been settled, and data relevant to this issue are also documented.


2003 ◽  
Vol 285 (1) ◽  
pp. H259-H269 ◽  
Author(s):  
Paavo Korge ◽  
Henry M. Honda ◽  
James N. Weiss

Fatty acids accumulate during myocardial ischemia and are implicated in ischemia-reperfusion injury and mitochondrial dysfunction. Because functional recovery after ischemia-reperfusion ultimately depends on the ability of the mitochondria to recover membrane potential (ΔΨm), we studied the effects of fatty acids on ΔΨm regulation, cytochrome c release, and Ca2+ handling in isolated mitochondria under conditions that mimicked aspects of ischemia-reperfusion. Long-chain but not short-chain free fatty acids caused a progressive and reversible (with BSA) increase in inner membrane leakiness (proton leak), which limited mitochondrial ability to support ΔΨm. In comparison, long-chain activated fatty acids promoted 1) a slower depolarization that was not reversible with BSA, 2) cytochrome c loss that was unrelated to permeability transition pore opening, and 3) inhibition of the adenine nucleotide translocator. Together, these results impaired both mitochondrial ATP production and Ca2+ handling. Diazoxide, a selective opener of mitochondrial ATP-dependent potassium (KATP) channels, partially protected against these effects. These findings indicate that long-chain fatty acid accumulation during ischemia-reperfusion may predispose mitochondria to cytochrome c loss and irreversible injury and identify a novel cardioprotective action of diazoxide.


2018 ◽  
Author(s):  
Alexandre Légiot ◽  
Claire Céré ◽  
Thibaud Dupoiron ◽  
Mohamed Kaabouni ◽  
Stéphen Manon

AbstractThe distribution of the pro-apoptotic protein Bax in the outer mitochondrial membrane (OMM) is a central point of regulation of apoptosis. It is now widely recognized that parts of the endoplasmic reticulum (ER) are closely associated to the OMM, and are actively involved in different signalling processes. We adressed a possible role of these domains, called Mitochondria-Associated Membranes (MAMs) in Bax localization and fonction, by expressing the human protein in a yeast mutant deleted of MDM34, a ERMES component (ER-Mitochondria Encounter Structure). By affecting MAMs stability, the deletion of MDM34 altered Bax mitochondrial localization, and decreased its capacity to release cytochrome c. Furthermore, the deletion of MDM34 decreased the size of an uncompletely released, MAMs-associated pool of cytochrome c.


2007 ◽  
Vol 282 (38) ◽  
pp. 27633-27639 ◽  
Author(s):  
Martin Ott ◽  
Erik Norberg ◽  
Katharina M. Walter ◽  
Patrick Schreiner ◽  
Christian Kemper ◽  
...  

Cytochrome c release from mitochondria is a key event in apoptosis signaling that is regulated by Bcl-2 family proteins. Cleavage of the BH3-only protein Bid by multiple proteases leads to the formation of truncated Bid (tBid), which, in turn, promotes the oligomerization/insertion of Bax into the mitochondrial outer membrane and the resultant release of proteins residing in the intermembrane space. Bax, a monomeric protein in the cytosol, is targeted by a yet unknown mechanism to the mitochondria. Several hypotheses have been put forward to explain this targeting specificity. Using mitochondria isolated from different mutants of the yeast Saccharomyces cerevisiae and recombinant proteins, we have now investigated components of the mitochondrial outer membrane that might be required for tBid/Bax-induced cytochrome c release. Here, we show that the protein translocase of the outer mitochondrial membrane is required for Bax insertion and cytochrome c release.


2001 ◽  
Vol 155 (6) ◽  
pp. 1003-1016 ◽  
Author(s):  
Muniswamy Madesh ◽  
György Hajnóczky

Enhanced formation of reactive oxygen species (ROS), superoxide (O2·−), and hydrogen peroxide (H2O2) may result in either apoptosis or other forms of cell death. Here, we studied the mechanisms underlying activation of the apoptotic machinery by ROS. Exposure of permeabilized HepG2 cells to O2·− elicited rapid and massive cytochrome c release (CCR), whereas H2O2 failed to induce any release. Both O2·− and H2O2 promoted activation of the mitochondrial permeability transition pore by Ca2+, but Ca2+-dependent pore opening was not required for O2·−-induced CCR. Furthermore, O2·− alone evoked CCR without damage of the inner mitochondrial membrane barrier, as mitochondrial membrane potential was sustained in the presence of extramitochondrial ATP. Strikingly, pretreatment of the cells with drugs or an antibody, which block the voltage-dependent anion channel (VDAC), prevented O2·−-induced CCR. Furthermore, VDAC-reconstituted liposomes permeated cytochrome c after O2·− exposure, and this release was prevented by VDAC blocker. The proapoptotic protein, Bak, was not detected in HepG2 cells and O2·−-induced CCR did not depend on Bax translocation to mitochondria. O2·−-induced CCR was followed by caspase activation and execution of apoptosis. Thus, O2·− triggers apoptosis via VDAC-dependent permeabilization of the mitochondrial outer membrane without apparent contribution of proapoptotic Bcl-2 family proteins.


Sign in / Sign up

Export Citation Format

Share Document