scholarly journals Application of Caco-2 Cell Line in Herb-Drug Interaction Studies: Current Approaches and Challenges

2014 ◽  
Vol 17 (1) ◽  
pp. 1 ◽  
Author(s):  
Charles Awortwe ◽  
P.S. Fasinu ◽  
B. Rosenkranz

The Caco-2 model is employed in pre-clinical investigations to predict the likely gastrointestinal permeability of drugs because it expresses cytochrome P450 enzymes, transporters, microvilli and enterocytes of identical characteristics to the human small intestine. The FDA recommends this model as integral component of the Biopharmaceutics Classification System (BCS). Most dedicated laboratories use the Caco-2 cell line to screen new chemical entities through prediction of its solubility, bioavailability and the possibility of drug-drug or herb-drug interactions in the gut lumen. However, challenges in the inherent characteristics of Caco-2 cell and inter-laboratory protocol variations have resulted to generation of irreproducible data. These limitations affect the extrapolation of data from pre-clinical research to clinical studies involving drug-drug and herb-drug interactions. This review addresses some of these caveats and enumerates the plausible current and future approaches to reduce the anomalies associated with Caco-2 cell line investigations focusing on its application in herb-drug interactions. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

2020 ◽  
Vol 48 (7) ◽  
pp. 528-536 ◽  
Author(s):  
Haeyoung Zhang ◽  
Chris Wolford ◽  
Abdul Basit ◽  
Albert P. Li ◽  
Peter W. Fan ◽  
...  

Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


JAMA ◽  
1966 ◽  
Vol 196 (13) ◽  
pp. 1125-1127 ◽  
Author(s):  
G. H. Bornside

1994 ◽  
Vol 8 (4) ◽  
Author(s):  
P. Marteau ◽  
M. F. Gerhardt ◽  
A. Myara ◽  
E. Bouvier ◽  
F. Trivin ◽  
...  

2020 ◽  
Vol 21 (12) ◽  
pp. 928-937
Author(s):  
Liyun Zhang ◽  
Xiaoqing Xu ◽  
Sara Badawy ◽  
Awais Ihsan ◽  
Zhenli Liu ◽  
...  

: As a kind of haemoglobin, cytochrome P450 enzymes (CYP450) participate in the metabolism of many substances, including endogenous substances, exogenous substances and drugs. It is estimated that 60% of common prescription drugs require bioconversion through CYP450. The influence of macrolides on CYP450 contributes to the metabolism and drug-drug interactions (DDIs) of macrolides. At present, most studies on the effects of macrolides on CYP450 are focused on CYP3A, but a few exist on other enzymes and drug combinations, such as telithromycin, which can decrease the activity of hepatic CYP1A2 and CYP3A2. This article summarizes some published applications of the influence of macrolides on CYP450 and the DDIs of macrolides caused by CYP450. And the article may subsequently guide the rational use of drugs in clinical trials. To a certain extent, poisoning caused by adverse drug interactions can be avoided. Unreasonable use of macrolide antibiotics may enable the presence of residue of macrolide antibiotics in animal-origin food. It is unhealthy for people to eat food with macrolide antibiotic residues. So it is of great significance to guarantee food safety and protect the health of consumers by the rational use of macrolides. This review gives a detailed description of the influence of macrolides on CYP450 and the DDIs of macrolides caused by CYP450. Moreover, it offers a perspective for researchers to further explore in this area.


Sign in / Sign up

Export Citation Format

Share Document