scholarly journals The Efficacy of Long Lasting Insecticidal Nets (LLINs) and Insecticide Treated Nets against Anopheles Mosquitoes

2019 ◽  
Vol 6 (2) ◽  
pp. 34-53
Author(s):  
Aye Mya Thandar ◽  
Phyo Wai Win ◽  
Soe Soe Htwe ◽  
Maung Maung Mya Mya
2019 ◽  
Vol 220 (3) ◽  
pp. 467-475 ◽  
Author(s):  
Jacob M Riveron ◽  
Silvie Huijben ◽  
Williams Tchapga ◽  
Magellan Tchouakui ◽  
Murielle J Wondji ◽  
...  

Abstract Background Insecticide resistance poses a serious threat to insecticide-based interventions in Africa. There is a fear that resistance escalation could jeopardize malaria control efforts. Monitoring of cases of aggravation of resistance intensity and its impact on the efficacy of control tools is crucial to predict consequences of resistance. Methods The resistance levels of an Anopheles funestus population from Palmeira, southern Mozambique, were characterized and their impact on the efficacy of various insecticide-treated nets established. Results A dramatic loss of efficacy of all long-lasting insecticidal nets (LLINs), including piperonyl butoxide (PBO)–based nets (Olyset Plus), was observed. This An. funestus population consistently (2016, 2017, and 2018) exhibited a high degree of pyrethroid resistance. Molecular analyses revealed that this resistance escalation was associated with a massive overexpression of the duplicated cytochrome P450 genes CYP6P9a and CYP6P9b, and also the fixation of the resistance CYP6P9a_R allele in this population in 2016 (100%) in contrast to 2002 (5%). However, the low recovery of susceptibility after PBO synergist assay suggests that other resistance mechanisms could be involved. Conclusions The loss of efficacy of pyrethroid-based LLINs with and without PBO is a concern for the effectiveness of insecticide-based interventions, and action should be taken to prevent the spread of such super-resistance.


2018 ◽  
Vol 2 ◽  
pp. 22 ◽  
Author(s):  
Alice Kamau ◽  
Joseph M. Mwangangi ◽  
Martin K. Rono ◽  
Polycarp Mogeni ◽  
Irene Omedo ◽  
...  

Background: Insecticide treated nets (ITNs) protect humans against bites from the Anopheles mosquito vectors that transmit malaria, thereby reducing malaria morbidity and mortality. It has been noted that ITN use leads to a switch from indoor to outdoor feeding among these vectors. It might be expected that outdoor feeding would undermine the effectiveness of ITNs that target indoors vectors, but data are limited. Methods: We linked homestead level geospatial data to clinical surveillance data at a primary healthcare facility in Kilifi County in order to map geographical heterogeneity in ITN effectiveness and observed vector feeding behaviour using landing catches and CDC light traps in six selected areas of varying ITN effectiveness. We quantified the interaction between mosquitoes and humans to evaluate whether outdoor vector biting is a potential explanation for the variation in ITN effectiveness. Results: We observed 37% and 46% visits associated with positive malaria slides among ITN users and non-ITN-users, respectively; ITN use was associated with 32% protection from malaria (crude OR = 0.68, 95% CI: 0.64, 0.73). We obtained significant modification of ITN effectiveness by geographical area (p=0.016), and identified significant hotspots using the spatial scan statistic. Majority of mosquitoes were caught outdoor (60%) and were of the An. funestus group (75%). The overall propensity to feed at times when most people are indoor was high; the vast majority of the Anopheles mosquitoes were caught at times when most people are indoor. Estimates for the proportion of human-mosquito contact between the first and last hour when most humans were indoor was consistently high, ranging from 0.83 to 1.00. Conclusion: Our data therefore do not support the hypothesis that outdoor biting limits the effectiveness of ITNs in our study area.


2020 ◽  
Author(s):  
Jeremiah John Musa ◽  
Sarah Moore ◽  
Jason Moore ◽  
Emmanuel Mbuba ◽  
Edgar Mbeyela ◽  
...  

Abstract Background: Long Lasting Insecticidal Nets (LLINs) are the most sustainable and effective malaria control tool currently available. Global targets are for 80% of the population living in malaria endemic areas to have access to (own) and use a LLIN. However, current access to LLINs in endemic areas is 56% due to system inefficiencies and budget limitations. Thus, cost-effective approaches to maximize access to effective LLINs in endemic areas are required. This study evaluated whether LLINs that had been stored for five years under manufacturer’s recommended conditions may be optimally effective against Anopheles mosquitoes, to inform malaria control programmes and governments on the periods over which LLINs may be stored between distributions, in an effort to maximise use of available LLINs. Methods: Standard World Health Organization (WHO) bioassays (cone and tunnel test) were used to evaluate the bio-efficacy and wash resistance of Olyset ® and DawaPlus ® 2.0 (rebranded Tsara ® Soft) LLINs after five years of storage at 25°C - 33.4°C and 40% - 100% relative humidity. In addition, a small scale Ifakara Ambient Chamber test (I-ACT) was conducted to compare the bio-efficacy of one long stored LLINs to one new LLIN of the same brand, washed or unwashed. LLINs were evaluated using laboratory reared fully susceptible Anopheles gambiae s.s (Ifakara strain) and pyrethroid resistant Anopheles arabiensis (Kingani strain). Results: After five years of storage, both unwashed and washed, Olyset ® and DawaPlus ® 2.0 (Tsara ® Soft) LLINs passed WHO bio-efficacy criteria on knockdown (KD60) ≥95%, 24-hour mortality ≥80% and ≥90% blood-feeding inhibition in WHO assays against susceptible An. gambiae s.s. DawaPlus ® 2.0 LLINs also passed combined WHO bioassay criteria against resistant An. arabiensis. Confirmatory I-ACT tests using whole nets demonstrated that long-stored LLINs showed higher efficacy than new LLINs on both feeding inhibition and mortality endpoints against resistant strains. Conclusions: Even after long-term storage of around 5 years, both Olyset ® and DawaPlus ® 2.0 LLINs remain efficacious against susceptible Anopheles mosquitoes at optimal storage range of 25°C - 33.4°C for temperature and 40% - 100% relative humidity measured by standard WHO methods. DawaPlus ® 2.0 (Tsara ® Soft) remained efficacious against resistant strain.


2020 ◽  
Author(s):  
April Monroe ◽  
Dickson Msaky ◽  
Samson Kiware ◽  
Brian B. Tarimo ◽  
Sarah Moore ◽  
...  

Abstract Background Zanzibar provides a good case study for malaria elimination. The islands have experienced a dramatic reduction in malaria burden since the introduction of effective vector control interventions and case management. Malaria prevalence has now been maintained below 1% for the past decade and the islands can feasibly aim for elimination. Methods To better understand factors that may contribute to remaining low-level malaria transmission in Zanzibar, layered human behavioural and entomological research was conducted between December 2016 and December 2017 in 135 randomly selected households across six administrative wards. The study included: 1) household surveys, 2) structured household observations of nighttime activity and sleeping patterns, and 3) paired indoor and outdoor mosquito collections. Entomological and human behavioural data were integrated to provide weighted estimates of exposure to vector bites, accounting for proportions of people indoors or outdoors, and protected by insecticide-treated nets (ITNs) each hour of the night. Results Overall, 92% of female Anopheles mosquitoes were caught in the rainy season compared to 8% in the dry season and 72% were caught outdoors compared to 28% indoors. For individual ITN users, ITNs prevented an estimated two-thirds (66%) of exposure to vector bites and nearly three quarters (73%) of residual exposure was estimated to occur outdoors. Based on observed levels of ITN use in the study sites, the population-wide mean personal protection provided by ITNs was 42%. Discussion/Conclusions This study identified gaps in malaria prevention in Zanzibar with results directly applicable for improving ongoing programme activities. While overall biting risk was low, the most notable finding was that current levels of ITN use are estimated to prevent less than half of exposure to malaria vector bites. Variation in ITN use across sites and seasons suggests that additional gains could be made through targeted social and behaviour change interventions. However, even for ITN users, gaps in protection remain, with a majority of exposure to vector bites occurring outdoors before going to sleep. Supplemental interventions targeting outdoor exposure to malaria vectors, and groups that may be at increased risk of exposure to malaria vectors, should be explored.


2021 ◽  
Author(s):  
Nakei Bubun ◽  
Timothy W Freeman ◽  
Moses Laman ◽  
Stephan Karl

We recently reported that long-lasting insecticidal nets (LLINs) distributed in Papua New Guinea (PNG) between 2013 and 2019, exhibited severely diminished efficacy to knock down and kill susceptible Anopheles mosquitoes. This coincided with a rise in malaria observed in PNG since 2015. Here we show that LLIN bioefficacy is increased by heating LLINs prior to WHO cone bioassays. Unused LLINs with low bioefficacy, delivered to PNG in 2019, were heated to 120 degrees Celsius for 5 minutes. Cone bioassays were performed before and at 1 h, 7 days and 30 days after heating. This led to a significant increase in 24 h mortality (17% to 61%) and 60 min knock down (31% to 72%). The effect was sustained over 30 days. Bioassays are crucial in quality assurance of LLIN products. Our findings indicate that bioassay results can easily be manipulated. This may have implications for quality assurance procedures used to assess LLINs.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 415
Author(s):  
Magellan Tchouakui ◽  
Leon M. J. Mugenzi ◽  
Benjamin D. Menze ◽  
Jude N. T. Khaukha ◽  
Williams Tchapga ◽  
...  

Monitoring cases of insecticide resistance aggravation and the effect on the efficacy of control tools is crucial for successful malaria control. In this study, the resistance intensity of major malaria vectors from Uganda was characterised and its impact on the performance of various insecticide-treated nets elucidated. High intensity of resistance to the discriminating concentration (DC), 5× DC, and 10× DC of pyrethroids was observed in both Anopheles funestus and Anopheles gambiae in Mayuge and Busia leading to significant reduced performance of long-lasting insecticidal nets (LLINs) including the piperonyl butoxide (PBO)-based nets (Olyset Plus). Molecular analysis revealed significant over-expression of cytochrome P450 genes (CYP9K1 and CYP6P9a/b). However, the expression of these genes was not associated with resistance escalation as no difference was observed in the level of expression in mosquitoes resistant to 5× DC and 10× DC compared to 1× DC suggesting that other resistance mechanisms are involved. Such high intensity of pyrethroid resistance in Uganda could have terrible consequences on the effectiveness of insecticide-based interventions and urgent action should be taken to prevent the spread of super-resistance in malaria vectors.


Author(s):  
Nakei Bubun ◽  
Timothy W. Freeman ◽  
Moses Laman ◽  
Stephan Karl

The authors recently reported that long-lasting insecticidal nets (LLINs) distributed in Papua New Guinea (PNG) between 2013 and 2019, exhibited severely diminished efficacy to knock down and kill susceptible Anopheles mosquitoes. This coincided with a rise in malaria observed in PNG since 2015. Here, the authors show that LLIN bioefficacy is increased by heating LLINs prior to WHO cone bioassays. Unused LLINs with low bioefficacy, delivered to PNG in 2019, were heated to 120°C for 5 minutes. Cone bioassays were performed before and at 1 hour, 7 days, and 30 days after heating. This led to a significant increase in 24-hour mortality (17–61%) and 60-minute knock down (31–72%). The effect was sustained over 30 days. Bioassays are crucial in quality assurance of LLIN products. Our findings indicate that bioefficacy of LLINs can be increased by heating. This may have implications for quality assurance procedures used to assess LLINs.


2018 ◽  
Vol 2 ◽  
pp. 22
Author(s):  
Alice Kamau ◽  
Joseph M. Mwangangi ◽  
Martin K. Rono ◽  
Polycarp Mogeni ◽  
Irene Omedo ◽  
...  

Background: Insecticide treated nets (ITNs) protect humans against bites from the Anopheles mosquito vectors that transmit malaria, thereby reducing malaria morbidity and mortality. It has been noted that ITN use leads to a switch from indoor to outdoor feeding among these vectors. It might be expected that outdoor feeding would undermine the effectiveness of ITNs that target indoors vectors, but data are limited. Methods: We linked homestead level geospatial data to clinical surveillance data at a primary healthcare facility in Kilifi County in order to map geographical heterogeneity in ITN effectiveness and observed vector feeding behaviour using landing catches and CDC light traps in six selected areas of varying ITN effectiveness. We quantified the interaction between mosquitoes and humans to evaluate whether outdoor vector biting is a potential explanation for the variation in ITN effectiveness. Results: We observed 37% and 46% visits associated with positive malaria slides among ITN users and non-ITN-users, respectively; ITN use was associated with 32% protection from malaria (crude OR = 0.68, 95% CI: 0.64, 0.73). We obtained significant modification of ITN effectiveness by geographical area (p=0.016), and identified significant hotspots using the spatial scan statistic. Majority of mosquitoes were caught outdoor (60%) and were of the An. funestus group (75%). The overall propensity to feed at times when most people are indoor was high; the vast majority of the Anopheles mosquitoes were caught at times when most people are indoor. Estimates for the proportion of human-mosquito contact between the first and last hour when most humans were indoor was consistently high, ranging from 0.83 to 1.00. Conclusion: Our data do not provide evidence of an epidemiological association between microgeographical variations in ITN effectiveness and variations in the microgeographical distribution of outdoor biting.


2021 ◽  
Vol 15 ◽  
pp. 117863022097473
Author(s):  
Brhane Gebremariam ◽  
Wondwosen Birke ◽  
Wuhib Zeine ◽  
Argaw Ambelu ◽  
Delenasaw Yewhalaw

Background: Long-Lasting Insecticidal Nets (LLINs) efficacy could be compromised due to a lot of influences together with user compliance and vector population insecticide resistance status. Thus, this study was to assess the biological efficacy of DuraNet® with the help of the World Health Organization cone bioassay and field experimental hut. Methods: A laboratory and a semi-field conditions experimental huts against Anopheles Mosquitoes were conducted in southwestern Ethiopia from September 2015 to January 2016. The bio efficacy of DuraNet® was evaluated using the WHO cone bioassay test and then its field efficacy was evaluated using experimental huts against the malaria vector population. Results: World Health Organization cone bioassay tests against pyrethroid-resistant An. arabiensis led to mean percent mortality and knockdown of 78% and 93%, respectively. Washing of DuraNet® successively reduced its efficacy from 93% knockdown (0 wash) to 45% knockdown (20 washes). Similarly, mean mortality decreased from 84% (0 wash) to 47% (20 washes). A total of 1575 female mosquitoes were collected over 40 nights out of which 1373(87.8%) were An. gambiae s.l., 116 (7.4%) were Anopheles coustani and 107 (6.8%) were An. pharoensis. The mean blood-feeding rate was significantly lower ( P < .001) in hut containing unwashed DuraNet® when compared to hut containing untreated DuraNet®. The mean mortality rate was significantly higher ( P < .001) in hut containing DuraNet® when compared to hut containing untreated DuraNet®. Unwashed DuraNet® showed the highest personal protection 88.7% and 100% against An. Arabiensis and An. pharoensis, respectively. Conclusion: Both DuraNet® and PermaNet 2.0 moderate efficacy against a pyrethroid-resistant population of An. arabiensis from Ethiopia. The bio efficacy of DuraNet® was found below the WHO recommendation. Therefore, the real impact of the observed insecticide resistance against DuraNet® to be further studied under phase-III trials, the need for new alternative vector control tools remains critical.


2019 ◽  
Author(s):  
Jeremiah John Musa ◽  
Sarah Moore ◽  
Jason Moore ◽  
Emmanuel Mbuba ◽  
Edgar Mbeyela ◽  
...  

Abstract Background: Long Lasting Insecticidal Nets (LLINs) are the most sustainable and effective malaria control tool currently available. Global targets are for 80% of the population living in malaria endemic areas to have access to (own) and use a LLIN. However, current access to LLINs in endemic areas is 56% due to system inefficiencies and budget limitations. Thus, cost-effective approaches to maximize access of effective LLINs in endemic areas are required. This study evaluated whether LLINs that had been stored for five years under manufacturer’s recommended conditions may be optimally effective against Anopheles mosquitoes, to inform malaria control programs and governments on the periods over which LLINs may be stored between distributions, in an effort to maximise use of available LLINs. Methods: Standard World Health Organization (WHO) bioassays (cone and tunnel test) were used to evaluate the bio-efficacy and wash resistance of Olyset® and DawaPlus® 2.0 (rebranded Tsara® Soft) LLINs after five years of storage at 25°C - 33.4°C and 40% - 100% relative humidity. In addition a small scale, Ifakara Ambient Chamber tests (I-ACT) were conducted to compare the bio-efficacy of one long stored LLINs to one new LLIN of the same brand, washed or unwashed. LLINs were evaluated using laboratory reared fully susceptible Anopheles gambiae s.s. (Ifakara) and pyrethroid resistant Anopheles arabiensis (Kingani). Results: After five years of storage, both unwashed and washed, Olyset® and DawaPlus® 2.0 LLINs passed WHO bio-efficacy criteria on knockdown (KD60) ≥95%, 24-hour mortality ≥80% and ≥90% blood-feeding inhibition in WHO assays against susceptible An. gambiae s.s. DawaPlus® 2.0 LLINs also passed combined WHO bioassay criteria against resistant An. arabiensis. Confirmatory I-ACT tests using whole nets demonstrated that long stored LLINs showed higher efficacy than new LLINs on both feeding inhibition and mortality endpoints against resistant strains. Conclusions: Even after long-term storage of around 5 years, Olyset® and DawaPlus® 2.0 LLINs remain efficacious against susceptible Anopheles mosquitoes at optimal storage range of 25°C - 33.4°C for temperature and 40% - 100% relative humidity measured by standard WHO methods.


Sign in / Sign up

Export Citation Format

Share Document