scholarly journals Advanced Noise-Optimized Dual-Energy Virtual Monochromatic Imaging vs. Conventional 120-kVp CT Imaging: Image Quality Assessment

Author(s):  
Adnan Honardari ◽  
Ahmad Bitarafan-Rajabi ◽  
Razieh Solgi ◽  
Mahsa Shakeri ◽  
Kiara Rezaei-Kalantari ◽  
...  

Purpose: This study aimed at evaluating the image quality characteristics of advanced noise-optimized and traditional virtual monochromatic images compared with conventional 120-kVp images from second-generation Dual-Source CT. Materials and Methods: For spiral scans six syringes filled with diluted iodine contrast material (1, 2, 5, 10, 15, 20 mg I/ml) were inserted into the test phantom and scanned with a second-generation dual-source CT in both single-energy (120-kVp) and dual-energy modes. Images set contain conventional single-energy 120-kVp, and virtual monochromatic were reconstructed with energies ranging from 40 to 190-keV in 1-keV steps. An energy-domain noise reduction algorithm was applied and the mean CT number, image noise, and iodine CNR were calculated. Results: The iodine CT number of conventional 120-kVp images compared with monochromatic of 40-, 50-, 60- and 70-keV images showed increase. The improvement ratio of image noise on Advanced Virtual Monochromatic Images (AVMIs) compared with the Traditional Virtual Monochromatic Images (TVMIs) at energies of 40-, 50-, 60, 70-keV was 52.9%, 35.7%, 8.1%, 2.1%, respectively. At AVMIs from 75- to 190-keV, the image noise value was less than conventional 120-kVp images. CNR improvement ratio at 20 mg/ml of iodinated contrast material for TVMIs and AVMIs compared to 120-kVp CT images and AVMIs compared to TVMI was 18.3% and 56.3%, 32.1% respectively. Conclusion: Both TVMIs (in energies ranging from 54 to 71-keV) and AVMIs (in energies ranging from 40 to 74-keV) represent improvement in the iodine contrast-to-noise ratio than conventional 120-kVp CT images for the same radiation dose. Also, AVMIs compared to TVMIs have been obtained considerable noise reduction and CNR improvement for low-energy virtual monochromatic images. In the present study, we show that virtual monochromatic image and its Advanced version (AVMI) may boost the dual-energy CT advantages by providing higher CNR images in the same exposure value compared to routinely acquired single-energy CT images.

2019 ◽  
Vol 29 (9) ◽  
pp. 4603-4612 ◽  
Author(s):  
Lukas Lenga ◽  
Franziska Trapp ◽  
Moritz H. Albrecht ◽  
Julian L. Wichmann ◽  
Addison A. Johnson ◽  
...  

2011 ◽  
Vol 22 (2) ◽  
pp. 279-286 ◽  
Author(s):  
Tobias De Zordo ◽  
Klemens von Lutterotti ◽  
Christian Dejaco ◽  
Peter F. Soegner ◽  
Renate Frank ◽  
...  

2016 ◽  
Vol 27 (2) ◽  
pp. 642-650 ◽  
Author(s):  
Julian L. Wichmann ◽  
Andrew D. Hardie ◽  
U. Joseph Schoepf ◽  
Lloyd M. Felmly ◽  
Jonathan D. Perry ◽  
...  

Author(s):  
Bernhard Petritsch ◽  
Aleksander Kosmala ◽  
Tobias Gassenmaier ◽  
Andreas Weng ◽  
Simon Veldhoen ◽  
...  

Purpose To compare radiation dose, subjective and objective image quality of 3 rd generation dual-source CT (DSCT) and dual-energy CT (DECT) with conventional 64-slice single-source CT (SSCT) for pulmonary CTA. Materials and Methods 180 pulmonary CTA studies were performed in three patient cohorts of 60 patients each. Group 1: conventional SSCT 120 kV (ref.); group 2: single-energy DSCT 100 kV (ref.); group 3: DECT 90/Sn150 kV. CTDIvol, DLP, effective radiation dose were reported, and CT attenuation (HU) was measured on three central and peripheral levels. The signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. Two readers assessed subjective image quality according to a five-point scale. Results Mean CTDIvol and DLP were significantly lower in the dual-energy group compared to the SSCT group (p < 0.001 [CTDIvol]; p < 0.001 [DLP]) and the DSCT group (p = 0.003 [CTDIvol]; p = 0.003 [DLP]), respectively. The effective dose in the DECT group was 2.79 ± 0.95 mSv and significantly smaller than in the SSCT group (4.60 ± 1.68 mSv, p < 0.001) and the DSCT group (4.24 ± 2.69 mSv, p = 0.003). The SNR and CNR were significantly higher in the DSCT group (p < 0.001). Subjective image quality did not differ significantly among the three protocols and was rated good to excellent in 75 % (135/180) of cases with an inter-observer agreement of 80 %. Conclusion Dual-energy pulmonary CTA protocols of 3 rd generation dual-source scanners allow for significant reduction of radiation dose while providing excellent image quality and potential additional information by means of perfusion maps. Key Points: Citation Format


Sign in / Sign up

Export Citation Format

Share Document