Value Chain Analysis of Palm Oil Biodiesel through a Hybrid (ISO-Eco) Life Cycle Assessment Approach

2016 ◽  
Vol 1 ◽  
Author(s):  
Yosef Manik

<p class="TTPParagraph1st">This study assesses the life-cycle impacts of palm oil biodiesel value chain in order to provide insights toward holistic sustainability awareness on the current development of bio-based energy policy. The assessment methodology was performed under a hybrid approach combining ISO-14040 Life Cycle Assessment (ISO-LCA) technique and Ecologically-based Life Cycle Assessment (Eco-LCA) methodology. The scope of this study covers all stages in palm oil biodiesel value chain or is often referred to as “cradle-to-grave” analysis. The functional unit to which all inputs and outputs were calculated is the production of 1 ton of biodiesel. For the analysis, life cycle inventory data were collected from professional databases and from scholarly articles addressing global palm oil supply chains. The inventory analysis yields a linked flow associating the land used, fresh fruit bunch (FFB), crude palm oil (CPO), per functional unit of 1 kg of palm oil biodiesel (POB). The linked flow obtained in the inventory analysis were then normalized and characterized following the characterization model formulated inISO-LCA guidelines. The aggregation of ecological inputs was classified based on the mass and energy associated to each unit process in the value chain, which are cultivation, extraction, conversion, and utilization. It is noted that compared to other unit processes, cultivation is the most crucial unit process within the whole palm oil biodiesel value chain. This study serves as a big picture about the current state of palm oil biodiesel value chain, which will be beneficial for further improving oversight of the policy making and service toward sustainable development.</p><p class="TTPKeywords"><strong><span> </span></strong></p>

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Yosef Manik

<p class="TTPParagraph1st">This study assesses the life-cycle impacts of palm oil biodiesel value chain in order to provide insights toward holistic sustainability awareness on the current development of bio-based energy policy. The assessment methodology was performed under a hybrid approach combining ISO-14040 Life Cycle Assessment (ISO-LCA) technique and Ecologically-based Life Cycle Assessment (Eco-LCA) methodology. The scope of this study covers all stages in palm oil biodiesel value chain or is often referred to as “cradle-to-grave” analysis. The functional unit to which all inputs and outputs were calculated is the production of 1 ton of biodiesel. For the analysis, life cycle inventory data were collected from professional databases and from scholarly articles addressing global palm oil supply chains. The inventory analysis yields a linked flow associating the land used, fresh fruit bunch (FFB), crude palm oil (CPO), per functional unit of 1 kg of palm oil biodiesel (POB). The linked flow obtained in the inventory analysis were then normalized and characterized following the characterization model formulated inISO-LCA guidelines. The aggregation of ecological inputs was classified based on the mass and energy associated to each unit process in the value chain, which are cultivation, extraction, conversion, and utilization. It is noted that compared to other unit processes, cultivation is the most crucial unit process within the whole palm oil biodiesel value chain. This study serves as a big picture about the current state of palm oil biodiesel value chain, which will be beneficial for further improving oversight of the policy making and service toward sustainable development.</p><p class="TTPKeywords"><strong><span> </span></strong></p>


2012 ◽  
Vol 44 ◽  
pp. 70-79 ◽  
Author(s):  
Simone Pereira Souza ◽  
Márcio Turra de Ávila ◽  
Sérgio Pacca

2013 ◽  
Vol 465-466 ◽  
pp. 1080-1086 ◽  
Author(s):  
Mohammad Hossein Mohammadi Ashnani ◽  
Anwar Johari ◽  
Haslenda Hashim ◽  
Elham Hasani

Almost identical properties with petroleum-derived diesel make biodiesel one of the best options of renewable and sustainable fuel supply to the transportation sector. Thanks to plentiful sources of palm oil and reasonable cost, it can be a proper feedstock for biodiesel production in Malaysia. Still, there is a paucity of studies concerning the effects of palm biodiesel on the environment. This paper, therefore, deals with life cycle assessment (LCA) of palm biodiesel to find out and validate the common belief regarding suitability of palm biodiesel as a green and sustainable fuel. The LCA study was conducted through three main stages including agricultural activities, oil milling, and transesterification process of biodiesel production. Palm oil biodiesel production results in the production of 1627.748kgCO2-eq of GHG and energy consumption of 12449.48MJ per ton PME. The results indicate that the most relevant environmental impact of this biofuel system is depletion of fossil resources.


Author(s):  
Benedetta Marmiroli ◽  
Lucia Rigamonti ◽  
Pablo R. Brito-Parada

Abstract Purpose The aim of this literature review is to investigate the role of the beneficiation stage in the Life Cycle Assessment (LCA) of metals and minerals with a focus on the flotation process. Methods The systematic literature search included LCA studies comprising the beneficiation stage in their system boundaries and resulted in 29 studies that met the criteria requirements and were analysed. First, the system boundaries are investigated, along with the level of detail in the description of the sub-processes (e.g. flotation) and data granularity. Then, the life cycle inventories are scrutinised: data transparency and the relation between system granularity and data availability is commented. Of particular relevance, the way in which the functional unit is dealt with is examined. Finally, studies impact assessments are compared and discussed, and key parameters are highlighted. Results and discussion For system boundaries, beneficiation is generally embedded into the mining stage. Even when described on its own, important sub-processes (e.g. flotation) are not considered, except for eight cases analysed. Functional unit definition is hindered by the output of the system being an intermediate product. Indeed, most studies use a declared functional unit but fail to provide its relevant characteristics, which is essential for a correct interpretation of results and for comparisons. Most studies rely on secondary data, not always presented transparently, to describe beneficiation. Results on the role of beneficiation in the metal value chain environmental impacts are conflicting, partly because of its site dependency. Site-dependent parameters found to be determining are ore grade, energy mix, mining technique, concentrate grade and ore mineralogy. Conclusions The flotation process, and more generally the beneficiation stage, is typically overlooked in LCA studies despite its growing relevance. Beneficiation not being assessed as a standalone stage, detailed in its subprocess, the use of outdated and secondary data, along with a lack of transparency in the inventory and in the key parameters are all factors that affect the environmental assessment of the entire metal and mineral sector, and thus the LCA of many products. Recommendation Greater efforts should be allocated to considering the sub-processes in the beneficiation stage, particularly flotation. Information on the identified key parameters should be available to the practitioners and sensitivity analyses to investigate their influence are recommended. Hotspots specific to flotation have been identified and should be used to orient data gathering when focusing on this process. Five options of functional unit and their application are recommended.


2021 ◽  
Vol 226 ◽  
pp. 00028
Author(s):  
Kiman Siregar ◽  
Supriyanto Supriyanto ◽  
Devitra Saka Rani ◽  
Yanuar Nurdiansyah ◽  
Feri Wijayanto

Life cycle assessment is a quantitative method to analyze the environmental impact that consists of four main activities: goal and scope definition, life cycle inventory, life cycle impact assessment, and interpretation. The application of the life cycle in palm oil industry are very important and already conducted by many researchers. However, the most difficult task in life cycle assessment are the life cycle inventory. In this research, this study proposed the software to support the life cycle inventory in palm oil production. The result of the study was the conceptual design of the life cycle inventory software.


2018 ◽  
Vol 913 ◽  
pp. 1018-1026
Author(s):  
Yan Qiong Sun ◽  
Yu Liu ◽  
Su Ping Cui

In this paper, a variety of blocks were grouped into the autoclaved blocks and fired blocks as far as the productive technology is concerned. In order to compare the life cycle impacts of the two kinds of the blocks, a life cycle assessment of two products on the functional unit 1m3 was carried out through the exploitation of mineral stage, transportation stage and the production of the blocks stage on the considering of the resource and energy consumption and the pollutant discharges. The results demonstrated that the fired blocks appeared to have less impact than autoclaved concrete blocks on human health, marine ecotoxicity toxicity and terrestrial ecotoxicity toxicity nearly 30%. The raw coal led to the serious impacts on the fossil depletion through the cement production stage of the autoclaved concrete blocks accounting for 45.86% and the gangue exploitation stage of the fired blocks accounting for 42.5%. Assessment of the data quality that the data was of pretty high or within the permission. The sensitivity analysis and contribution analysis assessment showed that the conclusion were robust.


Sign in / Sign up

Export Citation Format

Share Document