terrestrial ecotoxicity
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

2022 ◽  
Vol 14 (2) ◽  
pp. 846
Author(s):  
Georgios Archimidis Tsalidis

Industrial agriculture results in environmental burdens due to the overuse of fertilizers and pesticides. Fungicides is a class of pesticides whose application contributes (among others) to human toxicity and ecotoxicity. The European Union aims to increase organic agriculture. For this reason, this work aims to analyze climate change, freshwater ecotoxicity, terrestrial ecotoxicity, human toxicity, (terrestrial) acidification, and freshwater eutrophication impacts of fungicides and calculate expected benefits to human health (per European citizen) and ecosystem quality (terrestrial) with life cycle assessment (LCA) during crop production. The Scopus database was searched for LCA studies that considered the application of fungicides to specific crops. The analysis shows how many systemic and contact fungicides were considered by LCA studies and what was the applied dosage. Furthermore, it shows that fungicides highly contribute to freshwater ecotoxicity, terrestrial ecotoxicity, human toxicity, and freshwater eutrophication for fruits and vegetables, but to a low extent compared to all considered environmental impacts in the case of cereals and rapeseed. Expected benefits to human health and ecosystem quality after fungicides elimination are greater for fruits and vegetables, ranging between 0 to 47 min per European citizen in a year and 0 to 90 species per year, respectively.


Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 552
Author(s):  
Shaozhe Wang ◽  
Rajib Sinha

In recent years, Sweden has promoted prefabricated buildings supporting the increasing of prefabricated rates in buildings with precast components, in order to reduce the environmental problems caused by the construction sector. This study, focusing on the construction activities, examines how the increasing prefabricated rate could influence the environmental impacts of the construction sector. This study conducts a cradle-to-gate life cycle assessment (LCA) of a reference building with a prefabricated rate of 26% in the Stockholm Royal Seaport, and compares nine scenarios with prefabricated rates, ranging from 6% to 96%. The results indicate the water footprint decreases, but the total energy footprint and carbon footprint increase as the prefabricated rate increases. Among other impacts, terrestrial ecotoxicity shows the biggest increase with an increase of the prefabricated rate. This study reveals that material extraction is the largest influencing factor, causing a water footprint when the prefabricated rate increases. The impact changes in the energy footprint, carbon footprint, and terrestrial ecotoxicity, and are primarily determined by transport and are sensitive to transport distance and vehicle types.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4552
Author(s):  
Patrycja Bałdowska-Witos ◽  
Izabela Piasecka ◽  
Józef Flizikowski ◽  
Andrzej Tomporowski ◽  
Adam Idzikowski ◽  
...  

The article characterizes selected issues related to the method of performing environmental impact analyses. Particular attention was paid to the need for identifying environmental effects associated with the process of shaping beverage bottles. This study concerns the analysis of selected stages of the machine’s life cycle environmental impact in the specific case of the blow molding machine used in the production of bottles. Life cycle assessment analysis was performed using the SimaPro 8.4.0 software (The Dutch Company Pre Consultants). The CML 2 and ReCiPe2016 methods were chosen to interpret the lists of chemical emissions. Impact categories specific to the CML 2 model are: abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation. Among all the considered impact categories, marine aquatic ecotoxicity was characterized by the highest level of potential harmful effects occurring during the bottle production process. A new aspect of the research is to provide updated and more detailed geographic data on Polish bottle production.


2021 ◽  
Vol 335 ◽  
pp. 01001
Author(s):  
Priya B Satheesh ◽  
Kai Siang Oh ◽  
Lee Hong Tee

The risk of global water crisis is becoming more evident due to the increase in overall global urban population and reduction of freshwater availability. Treated greywater using greenwall technology was identified as a potential method to produce water for non-potable applications. The filtering media in greenwall technology acts as a growing media for the plants and as a filtration medium. In this study, the pollutant removal efficiency and environmental impacts associated with two filtering medias (coir pith and perlite) were investigated. The coir pith was found to have higher removal efficiencies for both COD and TSS removal compared to perlite. Besides, the life cycle of each filtering media used for greywater treatment in greenwall technology were compared. Coir pith was found to have a higher environmental impact on global warming potential (1.19568 kg CO2 eq.) and freshwater consumption (0.00066295 m3), while perlite was found to have a higher environmental impact in terms of fossil depletion (0.045562 kg oil eq.) and terrestrial ecotoxicity (0.008508135kg 1,4-DB eq). In conclusion, this study provides a framework for in-depth data analysis of the entire life cycle of filter media and a decision-making tool for the selection of suitable filtering media for greenwall filtration system.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6048
Author(s):  
A. Rashedi ◽  
Taslima Khanam ◽  
Mirjam Jonkman

As the world grapples with the COVID-19 pandemic, there has been a sudden and abrupt change in global energy landscape. Traditional fossil fuels that serve as the linchpin of modern civilization have found their consumption has rapidly fallen across most categories due to strict lockdown and stringent measures that have been adopted to suppress the disease. These changes consequently steered various environmental benefits across the world in recent time. The present article is an attempt to investigate these environmental benefits and reversals that have been materialized in this unfolding situation due to reduced consumption of fossil fuels. The life cycle assessment tool was used hereby to evaluate nine environmental impacts and one energy based impact. These impacts include ozone formation (terrestrial ecosystems), terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity, land use, mineral resources scarcity, and cumulative exergy demand. Outcomes from the study demonstrate that COVID-19 has delivered impressive changes in global environment and life cycle exergy demand, with about 11–25% curtailment in all the above-mentioned impacts in 2020 in comparison to their corresponding readings in 2019.


Author(s):  
A. Rashedi ◽  
Taslima Khanam ◽  
Mirjam Jonkman

As the world grapples with the COVID-19 pandemic, there has been a sudden and abrupt change in global energy landscape. Traditional fossil fuels that serve as the linchpin of the modern civilization have found their consumption rapidly fell across the most categories due to strict lockdown and stringent measures that have been adopted to suppress the disease. These changes consequently steered various environmental benefits across the world in recent time. The present article is an attempt to investigate these environmental benefits and reversals that have been materialized in this unfolding situation due to reduced consumption of fossil fuels. Life cycle assessment tool has been used hereby to evaluate nine environmental impacts and one energy based impact. These impacts include: ozone formation (terrestrial ecosystems), terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity, land use, mineral resources scarcity and cumulative exergy demand. Outcomes from the study demonstrate that COVID-19 has delivered impressive changes in global environment and life cycle exergy demand with about 11-25% curtailment in all above-mentioned impacts in 2020 in comparison to their corresponding readings in 2019.


2020 ◽  
Vol 12 (15) ◽  
pp. 6003
Author(s):  
Rattanawan Mungkung ◽  
Saruda Sitthikitpanya ◽  
Sarocha Dangsiri ◽  
Shabbir H. Gheewala

Thailand has a strategic national policy to increase organic rice farming. This study firstly applied Life Cycle Assessment for evaluating the quantitative environmental impacts at the regional and national levels to facilitate the national policy decision on the expansion of organic rice cultivation areas. The impact categories of interest included global warming, terrestrial acidification, freshwater eutrophication, terrestrial ecotoxicity, and freshwater ecotoxicity, and the life cycle impact assessment method applied was ReCiPe. The results showed that the life cycle environmental impacts from organic rice cultivation in the nine provinces in the North were lower than those from the 12 provinces in the Northeast, due mainly to the higher yields and lower use of fertilizers in the former. The methane emissions in the North (11,147 kg CO2e/ha) were similar to those in the Northeast (11,378 kg CO2e/ha). However, nitrous oxide emissions in the Northeast were higher than in the North due to the higher amounts of fertilizer used. If Thailand expands the rice farming by 50% in the North and by 50% in the Northeast, the greenhouse gas emissions could be reduced from 11,400 to 11,100 kg CO2e/ha, but the impacts of terrestrial acidification, freshwater eutrophication, terrestrial ecotoxicity, and freshwater ecotoxicity could be increased by 0.0257 kg PO4e (95%), 0.508 kg 1,4-DBe (53%), and 33.1 kg 1,4-DBe (17%), respectively. To reduce the global warming as well as other environmental impacts, Thailand should expand rice farming areas to the North. This information could be useful for supporting the policy decisions on which areas the organic rice farming should be expanded in to minimize the potential life cycle environmental impacts.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1931 ◽  
Author(s):  
Michał Krzyżaniak ◽  
Mariusz J. Stolarski ◽  
Kazimierz Warmiński

In Poland, unutilised land occupies approximately two million hectares, and it could be partly dedicated to the production of perennial crops. This study aimed to determine the environmental impact of the production of giant miscanthus (Miscanthus x giganteus J.M. Greef & M. Deuter). The experiment was set up on a low-fertility site. The crop was cultivated on sandy soil, fertilised with digestate, and mineral fertilisers (in the dose of 85 and 170 kg ha−1 N), and was compared with giant miscanthus cultivated with no fertilisation (control). The cradle-to-farm gate system boundary was applied. Fertilisers were more detrimental to the environment than the control in all analysed categories. The weakest environmental links in the production of miscanthus in the non-fertilised treatment were fuel consumption and the application of pre-emergent herbicide. In fertilised treatments, fertilisers exerted the greatest environmental impact in all the stages of crop production. The production and use of fertilisers contributed to fossil depletion, human toxicity, and freshwater and terrestrial ecotoxicity. Digestate fertilisers did not lower the impact of biomass production. The current results indicate that the analysed fertiliser rates are not justified in the production of giant miscanthus on nutrient-deficient soils.


Author(s):  
Tarinee Buadit ◽  
◽  
Cheerawit Rattanapan ◽  
Achara Ussawarujikulchai ◽  
Krisda Suchiva ◽  
...  

It is estimated that around 600,000 tons of end-of-life tires are generated annually in Thailand. These waste tires will cause danger to the environment and human health if handled improperly. On the other hand, if managed with the proper technology, it will be transformed into valuable products. This research aims to evaluate the potential environmental impacts of a waste tire pyrolysis plant in Thailand by using the Life Cycle Assessment (LCA) method. The functional unit is defined as 1 ton of products from the pyrolysis process of waste tires. The system boundary consists of a pre-treatment and pyrolysis process (gate-to-gate). The LCA calculations were carried out using licensed SimaPro 9.0 software. At the impact assessment step, the ReCiPe2016 method both Midpoint (problem-oriented) and Endpoint (damage-oriented) were applied, and 7 impact categories were selected (global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, terrestrial ecotoxicity, freshwater ecotoxicity, and fossil resource scarcity). If the avoided products from the pyrolysis process, including pyrolysis oil, steel wire, and carbon black were taken into account, the characterization results show that 3 impacts: global warming, terrestrial ecotoxicity, and fossil resource scarcity have a negative value. While the other impacts still have a positive value resulted mainly from electricity consumption. When considering weighting end-point results, it found that human health impact was a major contribution with a totally negative value of -0.947 Pt. As a summary, the outcomes confirm that the utilization of pyrolysis avoided products and the optimization of electricity consumption in the process has the potential to drives pyrolysis to become an environmentally effective technology for end-of-tires management.


2019 ◽  
Vol 17 (3) ◽  
pp. 522
Author(s):  
Joni Safaat Adiansyah ◽  
Nailawati Prastiya Ningrum ◽  
Dyan Pratiwi ◽  
Hadiyanto Hadiyanto

Pupuk urea adalah merupakan salah satu jenis pupuk yang paling banyak digunakan oleh petani di Indonesia. Total penggunaan pupuk urea selama tahun 2018 yang tercatat pada Kementerian Perindustrian Indonesia adalah sejumlah 6,27 Juta ton atau mengalami peningkatan 5% dari tahun sebelumnya. Salah satu pabrik yang menghasilkan pupuk urea adalah PT Pupuk Kujang di Cikampek Jawa Barat. Tujuan dari studi ini adalah untuk mengidentifikasi dampak lingkungan potensial yang dihasilkan dari produksi 50 Kg pupuk urea. Metode yang digunakan dalam kajian dampak daur hidup (Life Cycle Impact Assessment) adalah CML-IA dengan 11(sebelas) parameter yaitu abiotic depletion dan abiotic depletion (fossil fuel), global warming (GWP100), ozone layer depletion, human toxicity, fresh water dan marine aquatic ecotoxicity, terrestrial ecotoxicity, photochemical oxidation, acidification, dan eutrophication,  Adapun batasan sistem menggunakancradle to grave yang memperhitungakn bahan dasar, proses produksi, transportasi dan pengelolaan limbah (karung bekas pupuk). Dari hasil analisa didapatkan bahwa proses produksi memberikan kontribusi dampak paling besar dibandingkan dengan pengelolaan limbah sisa karung (landfill). Proses produksi memberikan kontribusi terhadap dampak potensial lingkungan pada kisaran 99,14 – 100 persen dari total dampak yang di hasilkan. Sebagai tambahan bahwa dampak yang ditimbulkan pada proses di pabrik ammonia akan memberikan kontribusi lebih besar pada kisaran 22-37 persen lebih besar dibandingkan dengan proses di pabrik urea.Dari hasil analisa dengan memanfaatkan grafik jaringan (networking graph) pada program SimaPro juga menunjukkan bahwa environmental hotspotsdari daur hidup pupuk urea disebabkan oleh penggunaan gas alam, katalis molybdenum, penggunaan listrik dari Perusahaan Listrik Negara (PLN), penggunaan polypropylene dalam material karung, dan transportasi. Dengan mempertimbangan environmental hotspot maka tindakan perbaikan berkelanjutan perlu dilakukan baik berupa  audit energi maupun pengelolaan penggunaan katalis.


Sign in / Sign up

Export Citation Format

Share Document