scholarly journals Selection of a Machine Steel Grade by Applying Computer Technologies

Author(s):  
Ilya M. Maltsev ◽  
2018 ◽  
Vol 10 (02) ◽  
pp. 1850015 ◽  
Author(s):  
Guanghui Zhao ◽  
Ju Li ◽  
Y. X. Zhang ◽  
Zheng Liang ◽  
Chunhui Yang

Five different cohesive zone models (CZMs), including bilinear, polynomial, trapezoidal, exponential, and PPR (Park–Paulino–Roesler) models, which are commonly used in simulating fracture failure of metallic materials, are evaluated in this paper. The cohesive parameters of these CZMs are determined by an inverse analysis based on the modified Levenberg–Marquardt method. A finite element (FE) model is developed by employing these CZMs and used to predict fracture behaviors of steel grade 120, which is frequently used for the tool joints of drill pipes. Tensile and fracture tests are conducted to determine material properties and fracture behaviors of the steel grade 120, and the fracture behavior obtained from the experiment is used to determine the CZM parameters and validate the FE model. It is found that the five CZMs, with the cohesive parameters determined by the inverse analysis, can be used to simulate the ductile fracture process of the steel, and that among the five CZMs, the exponential CZM provides the closest results to the experimental data.


2013 ◽  
Vol 58 (3) ◽  
pp. 763-767
Author(s):  
Z. Sierant

Abstract Industrial conditions of obtaining thick-walled and shaped castings intended for operations at temperatures: minus 40÷60°C are presented in the paper. The selection of a cast steel grade is based on known studies [1,10,14], however due to castings wall thickness (70-240mm), the way of preparing liquid metal (deep deoxidation and modification, argon stirring in a ladle) and conditions of filling mould cavities (gating system assuring quiet filling, directional solidification and avoiding a formation of inessential heat centres), were developed to assure the required impact strength. Maintaining these parameters as well as the selection of heat treatments for the produced massive castings allowed to achieve the impact strength over 50 J/cm2 at minus 40°. This value was obtained for walls of various thickness


2019 ◽  
Vol 42 ◽  
Author(s):  
Gian Domenico Iannetti ◽  
Giorgio Vallortigara

Abstract Some of the foundations of Heyes’ radical reasoning seem to be based on a fractional selection of available evidence. Using an ethological perspective, we argue against Heyes’ rapid dismissal of innate cognitive instincts. Heyes’ use of fMRI studies of literacy to claim that culture assembles pieces of mental technology seems an example of incorrect reverse inferences and overlap theories pervasive in cognitive neuroscience.


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


1978 ◽  
Vol 48 ◽  
pp. 515-521
Author(s):  
W. Nicholson

SummaryA routine has been developed for the processing of the 5820 plates of the survey. The plates are measured on the automatic measuring machine, GALAXY, and the measures are subsequently processed by computer, to edit and then refer them to the SAO catalogue. A start has been made on measuring the plates, but the final selection of stars to be made is still a matter for discussion.


Author(s):  
P.J. Killingworth ◽  
M. Warren

Ultimate resolution in the scanning electron microscope is determined not only by the diameter of the incident electron beam, but by interaction of that beam with the specimen material. Generally, while minimum beam diameter diminishes with increasing voltage, due to the reduced effect of aberration component and magnetic interference, the excited volume within the sample increases with electron energy. Thus, for any given material and imaging signal, there is an optimum volt age to achieve best resolution.In the case of organic materials, which are in general of low density and electric ally non-conducting; and may in addition be susceptible to radiation and heat damage, the selection of correct operating parameters is extremely critical and is achiev ed by interative adjustment.


Author(s):  
P. M. Lowrie ◽  
W. S. Tyler

The importance of examining stained 1 to 2μ plastic sections by light microscopy has long been recognized, both for increased definition of many histologic features and for selection of specimen samples to be used in ultrastructural studies. Selection of specimens with specific orien ation relative to anatomical structures becomes of critical importance in ultrastructural investigations of organs such as the lung. The uantity of blocks necessary to locate special areas of interest by random sampling is large, however, and the method is lacking in precision. Several methods have been described for selection of specific areas for electron microscopy using light microscopic evaluation of paraffin, epoxy-infiltrated, or epoxy-embedded large blocks from which thick sections were cut. Selected areas from these thick sections were subsequently removed and re-embedded or attached to blank precasted blocks and resectioned for transmission electron microscopy (TEM).


Author(s):  
K.-H. Herrmann ◽  
D. Krahl ◽  
H.-P Rust

The high detection quantum efficiency (DQE) is the main requirement for an imagerecording system used in electron microscopy of radiation-sensitive specimens. An electronic TV system of the type shown in Fig. 1 fulfills these conditions and can be used for either analog or digital image storage and processing [1], Several sources of noise may reduce the DQE, and therefore a careful selection of various elements is imperative.The noise of target and of video amplifier can be neglected when the converter stages produce sufficient target electrons per incident primary electron. The required gain depends on the type of the tube and also on the type of the signal processing chosen. For EBS tubes, for example, it exceeds 10. The ideal case, in which all impinging electrons create uniform charge peaks at the target, is not obtainable for several reasons, and these will be discussed as they relate to a system with a scintillator, fiber-optic and photo-cathode combination as the first stage.


Sign in / Sign up

Export Citation Format

Share Document