scholarly journals Algorithm defining the hydraulic resistance coefficient by lines method in gas-lift process

2017 ◽  
Vol 18 (2) ◽  
pp. 771 ◽  
Author(s):  
N.S. Hajiyeva ◽  
N.A. Safarova ◽  
N.A. Ismailov
2018 ◽  
Vol 193 ◽  
pp. 02034
Author(s):  
Ilya Bryansky ◽  
Yuliya Bryanskaya ◽  
Аleksandra Оstyakova

The data of hydraulic characteristics of flow are required to be more accurate to increase reliability and accident-free work of water conducting systems and hydraulic structures. One of the problems in hydraulic calculations is the determination of friction loss that is associated with the distribution of velocities over the cross section of the flow. The article presents a comparative analysis of the regularities of velocity distribution based on the logarithmic velocity profile and hydraulic resistance in pipes and open channels. It is revealed that the Karman parameter is associated with the second turbulence constant and depend on the hydraulic resistance coefficient. The research showed that the behavior of the second turbulence constant in the velocity profile is determined mainly by the Karman parameter. The attached illustrations picture the dependence of logarithmic velocity profile parameters based on different values of the hydraulic resistance coefficient. The results of the calculations were compared to the experimental-based Nikuradze formulas for smooth and rough pipes.


Author(s):  
Fikret A. Aliev ◽  
Nevazi A. Ismailov ◽  
Atif A. Namazov

AbstractIn this work the process of gas-lift in the oil production is considered. The process is described by partial differential equations of hyperbolic type. A small parameter is introduced, which is the inverse of the well depth. Gas-lift process is investigated behind the front of sound wave. The initial system of hyperbolic equations is reduced to the nonlinear ordinary differential equation (NODE) of the first order relatively to the gas volume and gas liquid (GLM), which depends on the coordinates of wells and hydraulic resistance coefficient (HRC). An asymptotic solution of NODE is obtained and this solution is calculated at the point. It is shown that for the determination of HRC statistical data of well is required (volume of injected gas at the wellhead of the annular space and GLM at the end of lift (debit)). Then on the basis of these results, by constituting the corresponding functional, which is the quadratic deviation of the statistics and calculated asymptotic solutions, the functional gradient is derived that allows one to calculate HRC in first approximation relative to small parameter. An example for the specific case from the practice shows that HRC in first approximation differs from the value on the order of 10


2019 ◽  
Vol 126 ◽  
pp. 00007 ◽  
Author(s):  
Andrey V. Dmitriev ◽  
Vadim E. Zinurov ◽  
Oksana S. Dmitrieva

This paper includes the description of a separator, developed by the authors for the gas flow purification from the finely dispersed particles. The authors also studied the influence of the separator dimensions and the dusty gas flow rate on the degree of its purification from the finely dispersed particles, as well as on the change in the hydraulic resistance of this apparatus. This paper also shows that the main forces that make the greatest contribution to the purification of the gas flow from the finely dispersed particles are centrifugal and inertial. Moreover, the dependencies of the purification efficiency on the Stokes numbers are shown in this paper. The authors studied the change in the hydraulic resistance coefficient of this apparatus from the Reynolds numbers as well.


Vestnik MGSU ◽  
2020 ◽  
pp. 399-408
Author(s):  
Lyudmila V. Volgina ◽  
Ivan A. Gusev

Introduction. Two-phase flow transmission is a complex process exposed to the influence of numerous factors. Its characteristics may depend on the physical properties of a flowing medium and on the properties of a pipeline, flow velocities, etc. A research into new types of hydraulic systems serves to identify the parameters that characterize the processes that accompany their transmission, especially if a multi-component flow is analyzed (a mix of water and abrasive particles). The mission of the research is to identify the value of hydraulic resistance coefficient in the course of transmission of a two-phase flow, or a mix of water and an abrasive. Materials and methods. A physics experiment, mathematical data processing methods, data description. Results. The co-authors have identified the hydraulic resistance coefficient value in the course of the mix transmission, as well as the parameters characterizing supplementary pressure losses in the course of the abrasive transmission. The experimental research enabled the co-authors to identify maximal water and mix application distances that reach 317 and 290 meters. Conclusions. The results, obtained by the co-authors, are the consequence of the pressure losses that occur in the course of mix transmission and the coefficients that characterize it. The flows considered in the article are used in the systems whose parameters are considerably different from those of traditional hydraulic engineering systems; therefore, any theoretical results obtained by the co-authors need experimental verification. Further, similar systems having different parameters must also be exposed to research to identify the relation between the pressure loss and the abrasive consumption rate and amount. The practical value of the research consists in the identification of maximal water and mix transmission and application distances providing that the operating parameters of the systems remain unchanged.


Sign in / Sign up

Export Citation Format

Share Document