logarithmic velocity profile
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)

2020 ◽  
Vol 22 (2) ◽  
pp. 637-648
Author(s):  
A. E. Zaryankin

AbstractThe methodology of obtaining a logarithmic velocity profile describing the velocity distribution in the cross section of the boundary layer, which is based on the well-known equation of L. Prandtl, based on its semi-empirical turbulence theory, is considered.It is shown that the logarithmic velocity profile obtained in this way does not satisfy any boundary condition arising from the classical definition of such concept as the boundary layer.The perfect coincidence of this velocity profile with the experimental data of Nikuradze demonstrated in the world scientific literature is a consequence of making these profiles not in a fixed, but in a floating coordinate system. When rebuilding the velocity profiles obtained at different Reynolds numbers, all the profiles lose their versatility and do not coincide with the actual velocity profiles in cylindrical pipes.


2020 ◽  
Author(s):  
Milad Hooshyar ◽  
Sara Bonetti ◽  
Arvind Singh ◽  
Efi Foufoula-Georgiou ◽  
Amilcare Porporato

<p>The channelization cascade observed in terrestrial landscapes describes the progressive formation of large channels from smaller ones starting from diffusion-dominated hillslopes. This behavior is reminiscent of other non-equilibrium complex systems, particularly fluids turbulence, where larger vortices break down into smaller ones until viscous dissipation dominates. Based on this analogy, we show that topographic surfaces emerging between parallel zero-elevation boundaries present a logarithmic scaling in the mean-elevation profile, which resembles the well-known logarithmic velocity profile in wall-bounded turbulence. Within this region of elevation fluctuation, the power spectrum exhibits a power-law decay resembling the Kolmogorov -5/3 scaling of turbulence. We also demonstrate that similar scaling behaviors emerge in surfaces from a laboratory experiment, natural basins, and constructed following optimality principles. In general, we show that the steady-state solutions of the governing equations of landscape evolution are the stationary surfaces of a functional defined as the average domain elevation. Depending on the exponent of the specific drainage area in the erosion term (m), the steady-state surfaces are local minimum (m<1) or maximum (m>1) of the average domain elevation.</p>


2018 ◽  
Vol 193 ◽  
pp. 02034
Author(s):  
Ilya Bryansky ◽  
Yuliya Bryanskaya ◽  
Аleksandra Оstyakova

The data of hydraulic characteristics of flow are required to be more accurate to increase reliability and accident-free work of water conducting systems and hydraulic structures. One of the problems in hydraulic calculations is the determination of friction loss that is associated with the distribution of velocities over the cross section of the flow. The article presents a comparative analysis of the regularities of velocity distribution based on the logarithmic velocity profile and hydraulic resistance in pipes and open channels. It is revealed that the Karman parameter is associated with the second turbulence constant and depend on the hydraulic resistance coefficient. The research showed that the behavior of the second turbulence constant in the velocity profile is determined mainly by the Karman parameter. The attached illustrations picture the dependence of logarithmic velocity profile parameters based on different values of the hydraulic resistance coefficient. The results of the calculations were compared to the experimental-based Nikuradze formulas for smooth and rough pipes.


Vestnik MGSU ◽  
2015 ◽  
pp. 103-109
Author(s):  
Valeriy Stepanovich Borovkov ◽  
Valeriy Valentinovich Volshanik ◽  
Irina Aleksandrovna Rylova

In this article the questions of kinematic structure of steady turbulent flow near a solid boundary are considered. It has been established that due to friction the value of the local Reynolds number decreases and always becomes smaller than the critical value of the Reynolds number, which leads to formation of viscous flow near a wall. Velocity profiles for the area of viscous flow with constant and variable shear stress are obtained. The experimental investigations of different authors showed that in this area the flow is of unsteady character, where viscous flow occurs intermittently with turbulent flow. With increasing distance from the wall the flow becomes fully turbulent. In the area where generation and dissipation of turbulence are very intensive, there is a developed turbulent flow with increasing distance from the wall. Dissipation of turbulence is an action of viscous force. The logarithmic velocity profile was obtained by L. Prandtl disregarding the viscous component and the linear variation of the shear stress in the depth flow. The profile parameters C and k were determined from Nikuradze’s experiments. The detailed investigations of Nikuradze’s experiments established the part of the flow where the logarithmic velocity profile is correctly confirmed.This part of the flow was called “Prandtl layer”. The measured velocity distribution above this layer deviates in the direction of greater values. Processing of experimental data revealed that the thickness of the “Prandtl layer”, normalized to the radius of a pipe, depend on a drag coefficient. The formula for determining the thickness of the “Prandtl layer” with the known value of the drag coefficient is obtained. It is shown that the thickness of “Prandtl layer” almost coincides with the boundary layer displacement thickness formed on the wall of the pipe.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Atakan Avci ◽  
Irfan Karagoz

In this paper, we propose a novel explicit equation for friction factor, which is valid for both smooth and rough wall turbulent flows in pipes and channels. The form of the proposed equation is based on a new logarithmic velocity profile and the model constants are obtained by using the experimental data available in the literature. The proposed equation gives the friction factor explicitly as a function of Reynolds number and relative roughness. The results indicate that the present model gives a very good prediction of the friction factor and can reproduce the Colebrook equation and its Moody plot. Therefore, the new approximation for the friction factor provides a rational, accurate, and practically useful method over the entire range of the Moody chart in terms of Reynolds number and relative roughness.


Sign in / Sign up

Export Citation Format

Share Document