scholarly journals A Study on the Effect of Fiber Loading and Orientation on Mechanical Behaviour of Jute Fiber Reinforced Epoxy Composites

Author(s):  
Md. Shadab Alam ◽  
2018 ◽  
Vol 225 ◽  
pp. 01022
Author(s):  
Falak O. Abasi ◽  
Raghad U. Aabass

Newer manufacturing techniques were invented and introduced during the last few decades; some of them were increasingly popular due to their enhanced advantages and ease of manufacturing over the conventional processes. Polymer composite material such as glass, carbon and Kevlar fiber reinforced composite are popular in high performance and light weight applications such as aerospace and automobile fields. This research has been done by reinforcing the matrix (epoxy) resin with two kinds of the reinforcement fibers. One weight fractions were used (20%) wt., Epoxy reinforced with chopped carbon fiber and second reinforcement was epoxy reinforced with hybrid reinforcements Kevlar fiber and improved one was the three laminates Kevlar fiber and chopped carbon fibers reinforced epoxy resin. After preparation of composite materials some of the mechanical properties have been studied. Four different fiber loading, i.e., 0 wt. %, 20wt. % CCF, 20wt. % SKF, AND 20wt. %CCF + 20wt. % SKF were taken for evaluating the above said properties. The thermal and mechanical properties, i.e., hardness load, impact strength, flexural strength (bending load), and thermal conductivity are determined to represent the behaviour of composite structures with that of fibers loading. The results show that with the increase in fiber loading the mechanical properties of carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, flexural strength test, Impact test, and Brinell hardness test the results show the flexural strength, impact strength of the hybrid composites values were increased with existence of Kevlar fibers, while the hardness was decrease. But the reinforcement with carbon fibers increases the hardness and decreases other tests.


Author(s):  
Isabela Leão Amaral da Silva ◽  
Alice Barreto Bevitori ◽  
Caroline Gomes de Oliveira ◽  
Frederico Muylaert Margem ◽  
Sergio Neves Monteiro

2018 ◽  
Vol 39 (S4) ◽  
pp. E2519-E2528 ◽  
Author(s):  
Anna Dilfi K.F. ◽  
Aiswarya Balan ◽  
Hong Bin ◽  
Guijun Xian ◽  
Sabu Thomas

2013 ◽  
Vol 48 (20) ◽  
pp. 2537-2547 ◽  
Author(s):  
Gujjala Raghavendra ◽  
Shakuntala Ojha ◽  
SK Acharya ◽  
SK Pal

Polimery ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 36-43 ◽  
Author(s):  
N. M. Z. Nik Baihaqi ◽  
A. Khalina ◽  
N. Mohd Nurazzi ◽  
H. A. Aisyah ◽  
S. M. Sapuan ◽  
...  

This study aims to investigate the effect of fiber hybridization of sugar palm yarn fiber with carbon fiber reinforced epoxy composites. In this work, sugar palm yarn composites were reinforced with epoxy at varying fiber loads of 5, 10, 15, and 20 wt % using the hand lay-up process. The hybrid composites were fabricated from two types of fabric: sugar palm yarn of 250 tex and carbon fiber as the reinforcements, and epoxy resin as the matrix. The ratios of 85 : 15 and 80 : 20 were selected for the ratio between the matrix and reinforcement in the hybrid composite. The ratios of 50 : 50 and 60 : 40 were selected for the ratio between sugar palm yarn and carbon fiber. The mechanical properties of the composites were characterized according to the flexural test (ASTM D790) and torsion test (ASTM D5279). It was found that the increasing flexural and torsion properties of the non-hybrid composite at fiber loading of 15 wt % were 7.40% and 75.61%, respectively, compared to other fiber loading composites. For hybrid composites, the experimental results reveal that the highest flexural and torsion properties were achieved at the ratio of 85/15 reinforcement and 60/40 for the fiber ratio of hybrid sugar palm yarn/carbon fiber-reinforced composites. The results from this study suggest that the hybrid composite has a better performance regarding both flexural and torsion properties. The different ratio between matrix and reinforcement has a significant effect on the performance of sugar palm composites. It can be concluded that this type of composite can be utilized for beam, construction applications, and automotive components that demand high flexural strength and high torsional forces.


Author(s):  
Banisetti Manoj ◽  
Chandrasekar Muthukumar ◽  
Chennuri Phani Durga Prasad ◽  
Swathi Manickam ◽  
Titus I. Benjamin

Sign in / Sign up

Export Citation Format

Share Document