scholarly journals Identification of breast cancer candidate genes using gene co-expression and protein-protein interaction information

Oncotarget ◽  
2016 ◽  
Vol 7 (24) ◽  
pp. 36092-36100 ◽  
Author(s):  
Zhenyu Yue ◽  
Hai-Tao Li ◽  
Yabing Yang ◽  
Sajid Hussain ◽  
Chun-Hou Zheng ◽  
...  
2021 ◽  
Vol 20 ◽  
pp. 153303382098329
Author(s):  
Yujie Weng ◽  
Wei Liang ◽  
Yucheng Ji ◽  
Zhongxian Li ◽  
Rong Jia ◽  
...  

Human epidermal growth factor 2 (HER2)+ breast cancer is considered the most dangerous type of breast cancers. Herein, we used bioinformatics methods to identify potential key genes in HER2+ breast cancer to enable its diagnosis, treatment, and prognosis prediction. Datasets of HER2+ breast cancer and normal tissue samples retrieved from Gene Expression Omnibus and The Cancer Genome Atlas databases were subjected to analysis for differentially expressed genes using R software. The identified differentially expressed genes were subjected to gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses followed by construction of protein-protein interaction networks using the STRING database to identify key genes. The genes were further validated via survival and differential gene expression analyses. We identified 97 upregulated and 106 downregulated genes that were primarily associated with processes such as mitosis, protein kinase activity, cell cycle, and the p53 signaling pathway. Visualization of the protein-protein interaction network identified 10 key genes ( CCNA2, CDK1, CDC20, CCNB1, DLGAP5, AURKA, BUB1B, RRM2, TPX2, and MAD2L1), all of which were upregulated. Survival analysis using PROGgeneV2 showed that CDC20, CCNA2, DLGAP5, RRM2, and TPX2 are prognosis-related key genes in HER2+ breast cancer. A nomogram showed that high expression of RRM2, DLGAP5, and TPX2 was positively associated with the risk of death. TPX2, which has not previously been reported in HER2+ breast cancer, was associated with breast cancer development, progression, and prognosis and is therefore a potential key gene. It is hoped that this study can provide a new method for the diagnosis and treatment of HER2 + breast cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suthanthiram Backiyarani ◽  
Rajendran Sasikala ◽  
Simeon Sharmiladevi ◽  
Subbaraya Uma

AbstractBanana, one of the most important staple fruit among global consumers is highly sterile owing to natural parthenocarpy. Identification of genetic factors responsible for parthenocarpy would facilitate the conventional breeders to improve the seeded accessions. We have constructed Protein–protein interaction (PPI) network through mining differentially expressed genes and the genes used for transgenic studies with respect to parthenocarpy. Based on the topological and pathway enrichment analysis of proteins in PPI network, 12 candidate genes were shortlisted. By further validating these candidate genes in seeded and seedless accession of Musa spp. we put forward MaAGL8, MaMADS16, MaGH3.8, MaMADS29, MaRGA1, MaEXPA1, MaGID1C, MaHK2 and MaBAM1 as possible target genes in the study of natural parthenocarpy. In contrary, expression profile of MaACLB-2 and MaZEP is anticipated to highlight the difference in artificially induced and natural parthenocarpy. By exploring the PPI of validated genes from the network, we postulated a putative pathway that bring insights into the significance of cytokinin mediated CLAVATA(CLV)–WUSHEL(WUS) signaling pathway in addition to gibberellin mediated auxin signaling in parthenocarpy. Our analysis is the first attempt to identify candidate genes and to hypothesize a putative mechanism that bridges the gaps in understanding natural parthenocarpy through PPI network.


2013 ◽  
Vol 14 (6) ◽  
pp. 11560-11606 ◽  
Author(s):  
Chia-Hsien Lee ◽  
Wen-Hong Kuo ◽  
Chen-Ching Lin ◽  
Yen-Jen Oyang ◽  
Hsuan-Cheng Huang ◽  
...  

PROTEOMICS ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 1800291 ◽  
Author(s):  
Mansheng Li ◽  
Qiang He ◽  
Jie Ma ◽  
Fuchu He ◽  
Yunping Zhu ◽  
...  

2011 ◽  
Vol 7 (7) ◽  
pp. 992-1002 ◽  
Author(s):  
Dajeong Lim ◽  
Nam-Kuk Kim ◽  
Hye-Sun Park ◽  
Seung-Hwan Lee ◽  
Yong-Min Cho ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Baoman Wang ◽  
Fei Yuan ◽  
Xiangyin Kong ◽  
Lan-Dian Hu ◽  
Yu-Dong Cai

Apoptosis is the process of programmed cell death (PCD) that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.


Sign in / Sign up

Export Citation Format

Share Document