scholarly journals BayesSUR: An R Package for High-Dimensional Multivariate Bayesian Variable and Covariance Selection in Linear Regression

2021 ◽  
Vol 100 (11) ◽  
Author(s):  
Zhi Zhao ◽  
Marco Banterle ◽  
Leonardo Bottolo ◽  
Sylvia Richardson ◽  
Alex Lewin ◽  
...  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Jan Klosa ◽  
Noah Simon ◽  
Pål Olof Westermark ◽  
Volkmar Liebscher ◽  
Dörte Wittenburg

Abstract Background Statistical analyses of biological problems in life sciences often lead to high-dimensional linear models. To solve the corresponding system of equations, penalization approaches are often the methods of choice. They are especially useful in case of multicollinearity, which appears if the number of explanatory variables exceeds the number of observations or for some biological reason. Then, the model goodness of fit is penalized by some suitable function of interest. Prominent examples are the lasso, group lasso and sparse-group lasso. Here, we offer a fast and numerically cheap implementation of these operators via proximal gradient descent. The grid search for the penalty parameter is realized by warm starts. The step size between consecutive iterations is determined with backtracking line search. Finally, seagull -the R package presented here- produces complete regularization paths. Results Publicly available high-dimensional methylation data are used to compare seagull to the established R package SGL. The results of both packages enabled a precise prediction of biological age from DNA methylation status. But even though the results of seagull and SGL were very similar (R2 > 0.99), seagull computed the solution in a fraction of the time needed by SGL. Additionally, seagull enables the incorporation of weights for each penalized feature. Conclusions The following operators for linear regression models are available in seagull: lasso, group lasso, sparse-group lasso and Integrative LASSO with Penalty Factors (IPF-lasso). Thus, seagull is a convenient envelope of lasso variants.


The R Journal ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 92 ◽  
Author(s):  
Loïc Yengo ◽  
Julien Jacques ◽  
Christophe Biernacki ◽  
Mickael Canouil

2015 ◽  
Vol 110 (509) ◽  
pp. 289-302 ◽  
Author(s):  
Qiang Sun ◽  
Hongtu Zhu ◽  
Yufeng Liu ◽  
Joseph G. Ibrahim

2019 ◽  
Author(s):  
Wikum Dinalankara ◽  
Qian Ke ◽  
Donald Geman ◽  
Luigi Marchionni

AbstractGiven the ever-increasing amount of high-dimensional and complex omics data becoming available, it is increasingly important to discover simple but effective methods of analysis. Divergence analysis transforms each entry of a high-dimensional omics profile into a digitized (binary or ternary) code based on the deviation of the entry from a given baseline population. This is a novel framework that is significantly different from existing omics data analysis methods: it allows digitization of continuous omics data at the univariate or multivariate level, facilitates sample level analysis, and is applicable on many different omics platforms. The divergence package, available on the R platform through the Bioconductor repository collection, provides easy-to-use functions for carrying out this transformation. Here we demonstrate how to use the package with sample high throughput sequencing data from the Cancer Genome Atlas.


2014 ◽  
Author(s):  
Karl W Broman

Every data visualization can be improved with some level of interactivity. Interactive graphics hold particular promise for the exploration of high-dimensional data. R/qtlcharts is an R package to create interactive graphics for experiments to map quantitative trait loci (QTL; genetic loci that influence quantitative traits). R/qtlcharts serves as a companion to the R/qtl package, providing interactive versions of R/qtl's static graphs, as well as additional interactive graphs for the exploration of high-dimensional genotype and phenotype data.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249002
Author(s):  
Wikum Dinalankara ◽  
Qian Ke ◽  
Donald Geman ◽  
Luigi Marchionni

Given the ever-increasing amount of high-dimensional and complex omics data becoming available, it is increasingly important to discover simple but effective methods of analysis. Divergence analysis transforms each entry of a high-dimensional omics profile into a digitized (binary or ternary) code based on the deviation of the entry from a given baseline population. This is a novel framework that is significantly different from existing omics data analysis methods: it allows digitization of continuous omics data at the univariate or multivariate level, facilitates sample level analysis, and is applicable on many different omics platforms. The divergence package, available on the R platform through the Bioconductor repository collection, provides easy-to-use functions for carrying out this transformation. Here we demonstrate how to use the package with data from the Cancer Genome Atlas.


2017 ◽  
Author(s):  
Wei Lan ◽  
Yingying Ma ◽  
Junlong Zhao ◽  
Hansheng Wang ◽  
Chih-Ling Tsai

Sign in / Sign up

Export Citation Format

Share Document