Mineralization of the Weilasituo rare metal-tin-polymetallic ore deposit in Inner Mongolia: Insights from fractional crystallization of granitic magmas

2021 ◽  
Vol 37 (3) ◽  
pp. 637-664
Author(s):  
WU Guang ◽  
◽  
LIU RuiLin ◽  
CHEN GongZheng ◽  
LI TieGang ◽  
...  
2007 ◽  
Vol 26 (4) ◽  
pp. 394-401 ◽  
Author(s):  
Shuyin Niu ◽  
Aiqun Sun ◽  
Baode Wang ◽  
Jianming Liu ◽  
Lijun Guo ◽  
...  

2001 ◽  
Vol 51 (4) ◽  
pp. 307-320 ◽  
Author(s):  
Yu Wang WANG ◽  
Jing Bin WANG ◽  
Takeshi UEMOTO ◽  
Li Juan WANG

1999 ◽  
Vol 556 ◽  
Author(s):  
Huifang Xu ◽  
Yifeng Wang

AbstractTransmission electron microscopy (TEM) and associated electron energy-loss spectroscopy (EELS) study show intergrowth of Ce4+-rich pyrochlore (metamict) and Ce3+-rich pyrochlore (partially metamict) in a Ce-rich pyrochlore from a rare earth element (REE) ore deposit of Inner Mongolia, Northern China. The partially metamict material is Ba-free and dominated by Ce3+. However, the metamict material is Ba-bearing and dominated by Ce3+,. The Ce4+-rich pyrochlore may result from radiation damage by alpha decay that also causes oxidation of Fe 2+ in titanite, and the interaction with a Ba-bearing oxidizing fluid. The oxidation of Ce3+ in the primary pyrochlore is accompanied by in the loss of REE, Ca, and Pb, a daughter product of U via alpha decay, during the alteration. However, most REE were incorporated in the alteration product, the Ce4+-rich pyrochlore. Based on EDS and EELS analyses, the chemical formulae of the partially metamict Ce3+-rich pyrochlore and metamict Ce4+-rich pyroeblore can be written as: (Ca, Ce3+, U, Pb) 2(Ti, Nb)2O7−x(OH)x, and (Ba, Ca, Ce4+, U)2 (Ti, Nb)2O7−y(OH)y, respectively. Ce is the most abundant element among all REE. It is proposed that the alteration takes place in solid-state with oxidizing fluid as a catalyst. The alteration kinetics is controlled by diffusion processes of aqueous species in metamict pyrochlore.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 548
Author(s):  
Justyna Ciesielczuk ◽  
Mateusz Dulski ◽  
Janusz Janeczek ◽  
Tomasz Krzykawski ◽  
Joachim Kusz ◽  
...  

A wide compositional range, covering about 90% of an expected erythrite-köttigite substitutional solid solution with extreme compositions of (Co2.84Mg0.14Zn0.02) (AsO4)2·8H2O and (Zn2.74Co0.27) (AsO4)2·8H2O, was revealed in a suite of samples from a polymetallic ore deposit in Miedzianka, SW Poland. Members of the solid solution series were examined by means of Electron Probe Microanalysis (EPMA), Scanning Electron Microscopy (SEM)/Energy-Dispersive Spectrometer (EDS), X-ray single-crystal and powder diffraction, and Raman spectroscopy. Metal cations were randomly distributed between two special octahedral sites in the erythrite–köttigite structure. In response to Co ↔ Zn substitutions, small but significant changes in bond distances (particularly in [AsO4] tetrahedra), rotation, and distortion of co-ordination polyhedra were observed. Two sub-series of dominant cationic substitutions (Co-Mg-Ni and Co-Fe-Zn) were noted within the arsenate series of vivianite-group minerals linked by erythrite. The paragenetic sequence erythrite → Zn-rich erythrite → Co-rich köttigite → köttigite reflects the evolution of the solution’s pH towards increased acidity and a relative increase in the concentration of Zn ions following precipitation of erythrite.


Sign in / Sign up

Export Citation Format

Share Document