scholarly journals Assessing efficacies of insect pest management methods to preserve nutritional composition of bagged maize in storehouses located in markets in Nigeria

2021 ◽  
Vol 21 (04) ◽  
pp. 17972-17988
Author(s):  
GO Otitodun ◽  
◽  
AA Ala ◽  
SI Nwaubani ◽  
MO Omobowale ◽  
...  

Maize needs to be stored using effective and safe postharvest management measures to prevent physical insect damage as well as ensure stability of nutritional quality during storage. In this study, conducted in February–December 2016, insect pest management methods for bagged maize preservation in storehouses located in markets in Nigeria were evaluated for their ability to preserve nutritional quality. Study locations were in three grain markets, namely Eleekara market in Oyo town and Arisekola market in Ibadan, Oyo State, South West Nigeria, and Ago market in Ilorin, Kwara State, North Central Nigeria. Treatments comprised Piper guineense(Botanical), Bularafa diatomaceous earth (DE), permethrin powder(Rambo™) (Permethrin), PICSbags(hermetic)and ZeroFly® bags(non-hermetic). The study also had negative control(Control)comprising untreated maize in polypropylene bags. In general, as a result of insect infestation, protein content increased in all treatments except PICS which had the least infestation. After 11 months of storage, Permethrin and PICS treatments had the lowest insect infestation levels and the highest energy levels. Energy level in the Botanical treatment was also high and similar to levels in Permethrin and PICS treatments most likely due to fats and essential oils in P. guineense being adsorbed and/or absorbed by kernels. Fat content was lower in the Control and DE treatments likely due to the Control having the highest insect infestation and the DE adsorbing and/or absorbing fat from kernels. During storage carbohydrate content decreased in all treatments except the Control. However, even in the Control, there was a clear trend of decrease in carbohydrate content. Because the Control had the highest insect (Sitophilus zeamais) infestation and insect damaged kernels (IDK), this trend in decrease in carbohydrate content may be insect related. Ash content increased in the ZeroFly treatment, was unchanged in Botanical, Control, and PICS treatments, and decreased in DE and Permethrin treatments. Nutritional quality variables in this study were within or close to the known value ranges for maize. Therefore, use of maize that had been fumigated well and had a relatively low initial grain MC (9.1%), in addition to the effects of the treatments most likely slowed down population growth of the several insect species that were found and contributed to preserving nutritional quality. The relatively low insect populations in all treatments, including the Control, during the February–September period probably reduced the clarity of effects of infestation on nutritional composition reported in this study.

2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


2016 ◽  
pp. 135-168
Author(s):  
Tamoghna Saha ◽  
Nithya C. ◽  
Shyambabu S. ◽  
Kiran Kumari ◽  
S. N. Ray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document