scholarly journals Periodic and Conditionally Periodic Motion of a Satellite-Gyrostat under Gravitational Moment on the Circular Orbit

Author(s):  
А.А. Панкратов ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jingji Wang ◽  
Chunyang Liu

With high-precision DEM (Digital Elevation Model) and GMTI (Ground Moving Target Indicator) as the demand background, the influence of J 2 zonal harmonic term perturbation on the relative motion of the millimeter-level short-range leader-follower satellites in near-circular orbit is studied through the relative perturbation method. An equation of motion that can describe the motion of the leader-follower satellites under the influence of J 2 perturbation in near-circular orbit is derived, and the characteristics of the trajectory of in-plane periodic motion are analyzed. A study shows that under the influence of the relative perturbation of the J 2 term, the in-plane periodic motion of the leader-follower satellites in near-circular orbit is a symmetrical closed “drop-shaped” trajectory with a period of 2 π / n . By comparing with the results of numerical simulations, the correctness of the conclusions obtained in this paper is verified. According to the research results, it can be known that only using a thruster as the actuator to maintain the relative position can no longer meet the requirements of the long-term mm-level relative position maintenance. In the future, a new technical approach needs to be explored to achieve the long-term relative position maintenance with millimeter-level control accuracy.


1997 ◽  
Vol 92 (3) ◽  
pp. 481-489
Author(s):  
Z. Niedzielska ◽  
P. Wąż

2019 ◽  
Vol 18 (2) ◽  
pp. 21-32
Author(s):  
E. V. Barinova ◽  
I. A. Timbai

Motion of a dynamically symmetric CubeSat nanosatellite around the mass center on the circular orbit under the action of aerodynamic and gravitational torques is considered. We determined the nanosatellite equilibrium positions in the flight path axis system. We took into account the fact that the CubeSat nanosatellite has a rectangular parallelepiped shape and, therefore, the aerodynamic drag force coefficient depends on the angles of attack and proper rotation. We obtained formulae which allow calculating the values of the angles of attack, precession and proper rotation that correspond to the equilibrium positions, depending on the mass-inertia and geometric parameters of the nanosatellite, the orbit altitude, and the atmospheric density. It is shown that if the gravitational moment predominates over the aerodynamic one, there are 16 equilibrium positions, if the aerodynamic moment predominates over the gravitational one, there are 8 equilibrium positions, and in the case when both moments have comparable values there are 8, 12 or 16 equilibrium positions. Using the formulae obtained, we determined the equilibrium positions of the SamSat-QB50 nanosatellite. We calculated the ranges of altitudes where SamSat-QB50 nanosatellite has 8, 12, or 16 relative equilibrium positions.


2013 ◽  
Vol 435 (3) ◽  
pp. 2328-2334 ◽  
Author(s):  
A. C. Dunhill ◽  
R. D. Alexander
Keyword(s):  

2021 ◽  
Vol 11 (9) ◽  
pp. 4237
Author(s):  
Mingjie Zhang ◽  
Jiangang Yang ◽  
Wanfu Zhang ◽  
Qianlei Gu

The elliptical orbit whirl model is widely used to identify the frequency-dependent rotordynamic coefficients of annular seals. The existing solution technique of an elliptical orbit whirl model is the transient computational fluid dynamics (CFD) method. Its computational time is very long. For rapid computation, this paper proposes the orbit decomposition method. The elliptical whirl orbit is decomposed into the forward and backward circular whirl orbits. Under small perturbation circumstances, the fluid-induced forces of the elliptical orbit model can be obtained by the linear superposition of the fluid-induced forces arising from the two decomposed circular orbit models. Due to that the fluid-induced forces of circular orbit, the model can be calculated with the steady CFD method, and the transient computations can be replaced with steady ones when calculating the elliptical orbit whirl model. The computational time is significantly reduced. To validate the present method, its rotordynamic results are compared with those of the transient CFD method and experimental data. Comparisons show that the present method can accurately calculate the rotordynamic coefficients. Elliptical orbit parameter analysis reveals that the present method is valid when the whirl amplitude is less than 20% of seal clearance. The effect of ellipticity on rotordynamic coefficients can be ignored.


2020 ◽  
Vol 53 (2) ◽  
pp. 8401-8406
Author(s):  
Shingo Ito ◽  
Han Woong Yoo ◽  
Georg Schitter

Sign in / Sign up

Export Citation Format

Share Document