galvanometer scanner
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 17)

H-INDEX

7
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8211
Author(s):  
Yoon-Soo Shin ◽  
Junhee Kim

Liquid dampers, such as tuned liquid dampers (TLDs), are employed to improve serviceability by reducing wind-affected building vibrations. In order to maximize the vibration suppression efficiency of the liquid damper, the tuning frequency of the liquid damper should match the natural frequency of the building. Experimental evaluation of the tuning frequency of a liquid damper performed in a factory prior to installation in a building is a critical task to ensure correct performance, and for this, multipoint measurement of the TLD is required. In this study, a novel liquid level measurement system combining Laser Doppler Vibrometer (LDV) and a stepwise rotating galvanometer scanner was developed to observe liquid sloshing in TLD. The proposed system can measure the liquid level at multiple points simultaneously with a single laser point. In the experimental phase, the liquid damper’s natural frequency and mode shape are experimentally evaluated utilizing the developed system. The performance of the proposed system was verified by comparison with the video sensing system.


2021 ◽  
Vol 11 (21) ◽  
pp. 9788
Author(s):  
Guangsheng Chen ◽  
Yunlong Wang

Laser processing plays an important role in industrial manufacturing, in which a galvanometer scanner (GS) functions as the core component of the laser processing equipment. With the development of the digital system, the GS based on the digital system finds a broader range of potential application. In order to address the slow step-responses of a GS with disturbance and parameter perturbation, the mathematical model of the motor of the GS is derived and a discrete-time sliding-mode variable-structure controller (DSVC) based on a decoupled disturbance compensator (DDC) (DSVC+DDC) is designed. The step-response performance of a GS is the key factor affecting the quality evaluation of laser processing. Experiments are conducted on the step responses of the motor of the GS on a digital experimental platform. The experiment results show that when guaranteeing a steady-state error within 20 urad and an overshoot of less than 5%, the rise time for step-responses in 1% and 10% of the whole stroke is 1 and 2 ms, decreasing by 23% and 58% compared with the reference performance index, which indicates the effectiveness of the proposed method. The proposed approach can not only compensate for the external disturbance online and improve the step-response speed of the GS, but also relax the traditionally assumed limit of the upper bound of external disturbance to the limit of the change rate of external disturbance, which reduces the difficulty of a practical application. This method has great significance for further applications in high precision machining.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5984
Author(s):  
Yisheng Yin ◽  
Chengrui Zhang ◽  
Tieshuang Zhu

This paper builds an infinity shaped (“∞”-shaped) laser scanning welding test platform based on a self-developed motion controller and galvanometer scanner control gateway, takes the autogenous bead-on-plate welding of 304SS with 3 mm thick specimens as the experimental objects, designs the experimental parameters by the Latin hypercube sampling method for obtaining different penetration depth welded joints, and presents a methodology based on the neuroevolution of augmenting topologies for predicting the penetration depth of “∞”-shaped laser scanning welding. Laser power, welding speed, scanning frequency, and scanning amplitude are set as the input parameters of the model, and welding depth (WD) as the output parameter of the model. The model can accurately reflect the nonlinear relationship between the main welding parameters and WD by validation. Moreover, the normalized root mean square error (NRMSE) of the welding depth is about 6.2%. On the whole, the proposed methodology and model can be employed for guiding the actual work in the main process parameters’ preliminary selection and lay the foundation for the study of penetration morphology control of “∞”-shaped laser scanning welding.


Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 305
Author(s):  
Daewoon Seong ◽  
Sangyeob Han ◽  
Jaeyul Lee ◽  
Euimin Lee ◽  
Yoonseok Kim ◽  
...  

Photoacoustic imaging (PAI) is a hybrid non-invasive imaging technique used to merge high optical contrast and high acoustic resolution in deep tissue. PAI has been extensively developed by utilizing its advantages that include deep imaging depth, high resolution, and label-free imaging. As a representative implementation of PAI, photoacoustic microscopy (PAM) has been used in preclinical and clinical studies for its micron-scale spatial resolution capability with high optical absorption contrast. Several handheld and portable PAM systems have been developed that improve its applicability to several fields, making it versatile. In this study, we developed a laboratory-customized, two-axis, waterproof, galvanometer scanner-based handheld PAM (WP-GVS-HH-PAM), which provides an extended field of view (14.5 × 9 mm2) for wide-range imaging. The fully waterproof handheld probe enables free movement for imaging regardless of sample shape, and volume rate and scanning region are adjustable per experimental conditions. Results of WP-GVS-HH-PAM-based phantom and in vivo imaging of mouse tissues (ear, iris, and brain) confirm the feasibility and applicability of our system as an imaging modality for various biomedical applications.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Weijian Zong

AbstractA novel technique based on the remote-focusing concept, using a galvanometer scanner combined with a self-fabricated “step mirror” or “tilted mirror” to transform fast lateral scanning into axial scanning, was reported as a new solution for fast, subcellular, 3D fluorescence imaging.


Sign in / Sign up

Export Citation Format

Share Document