atmospheric density
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 48)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Daochun Yu ◽  
Haitao Li ◽  
Baoquan Li ◽  
Mingyu Ge ◽  
Youli Tuo ◽  
...  

Abstract. The X-ray Earth occultation sounding (XEOS) is an emerging method for measuring the neutral density in the lower thermosphere. In this paper, the X-ray Earth occultation (XEO) of the Crab Nebula is investigated by using the Insight-HXMT. The pointing observation data on the 30th September, 2018 recorded by the Low Energy X-ray telescope (LE) of Insight-HXMT are selected and analyzed. The extinction lightcurves and spectra during the X-ray Earth occultation process are extracted. A forward model for the XEO lightcurve is established and the theoretical observational signal for lightcurve is predicted. A Bayesian data analysis method is developed for the XEO lightcurve modeling and the atmospheric density retrieval. The posterior probability distribution of the model parameters is derived through the Markov Chain Monte Carlo (MCMC) algorithm with the NRLMSISE-00 model and the NRLMSIS 2.0 model as basis functions and the best-fit density profiles are retrieved respectively. It is found that in the altitude range of 105–200 km, the retrieved density profile is 88.8 % of the density of NRLMSISE-00 and 109.7 % of the density of NRLMSIS 2.0 by fitting the lightcurve in the energy range of 1.0–2.5 keV based on XEOS method. In the altitude range of 95–125 km, the retrieved density profile is 81.0 % of the density of NRLMSISE-00 and 92.3 % of the density of NRLMSIS 2.0 by fitting the lightcurve in the energy range of 2.5–6.0 keV based on XEOS method. In the altitude range of 85–110 km, the retrieved density profile is 87.7 % of the density of NRLMSISE-00 and 101.4 % of the density of NRLMSIS 2.0 by fitting the lightcurve in the energy range of 6.0–10.0 keV based on XEOS method. The measurements of density profiles are compared with the NRLMSISE-00/NRLMSIS 2.0 model simulations and the previous retrieval results with RXTE satellite. Finally, we find that the retrieved density profile from Insight-HXMT based on the NRLMSISE-00/NRLMSIS 2.0 models is qualitatively consistent with the previous retrieved results from RXTE. This study demonstrate that the XEOS from the X-ray astronomical satellite Insight-HXMT can provide an approach for the study of the upper atmosphere. The Insight-HXMT satellite can join the family of the XEOS. The Insight-HXMT satellite with other X-ray astronomical satellites in orbit can form a space observation network for XEOS in the future.


2021 ◽  
Author(s):  
Shunchenqiao Bai ◽  
Guangwei Wen ◽  
Zhaokui Wang

Abstract Atmospheric drag calculation error greatly reduce the low-earth orbit spacecraft trajectory prediction fidelity. To solve the issue, the "correction - prediction" strategy is usually employed. In the method, one parameter is fixed and other parameters are revised by inverting spacecraft orbit data. However, based on a single spacecraft data, the strategy usually performs poorly as parameters in drag force calculation are coupled with each other, which result in convoluted errors. A gravity field recovery and atmospheric density detection satellite, Q-Sat, developed by xxxxx Lab at xxx University, is launched on August 6th, 2020. The satellite is designed to be spherical for a constant drag coefficient regardless of its attitude. An orbit prediction method for low-earth orbit spacecraft with employment of Q-Sat data is proposed in present paper for decoupling atmospheric density and drag coefficient identification process. For the first step, by using a dynamic approach-based inversion, several empirical atmospheric density models are revised based on Q-Sat orbit data. Depends on the performs, one of the revised atmospheric density model would be selected for the next step in which the same inversion is employed for drag coefficient identification for a low-earth orbit operating spacecraft whose orbit needs to be predicted. Finally, orbit forecast is conducted by extrapolation with the dynamic parameters in the previous steps. Tests are carried out for the proposed method by using a GOCE satellite 15-day continuous orbit data. Compared with legacy “correction - prediction” method in which only GOCE data is employed, the accuracy of the 24-hour orbit prediction is improved by about 171m the highest for the proposed method. 14-day averaged 24-hour prediction precision is elevated by approximately 70m.


2021 ◽  
Author(s):  
Qiang Li ◽  
Jingwen Xu ◽  
Weiping Li ◽  
Yu Gao ◽  
Chao Wang ◽  
...  

2021 ◽  
Vol 45 (1) ◽  
pp. 73-83
Author(s):  
Saydul Morshed Tanvir ◽  
Xiao Wenbo ◽  
Jin Xin

Based on the power generation model of photovoltaic modules, the effects of flight speed, altitude, time and area in solar aircraft on the performance of photovoltaic modules have been studied. As the flight speed increases, the power generated by the module increases but tends to saturate. When the conversion efficiency of photovoltaic modules is improved, the required power of the solar aircraft and the power generated by the photovoltaic modules are balanced at a faster flight speed. The power generated by the modules increases with the flight altitude but tends to saturate due to the drop of air temperature and the surface temperature of the module. The higher the altitude, the smaller is the atmospheric density, and atmospheric permeability, and the greater is the solar radiation intensity, and thus the power generated by the module increases. The power generated by the components is the strongest at noon. Battery performance is the strongest in summer and the weakest in winter, as the module’s performance is mainly determined by the intensity of solar radiation. Finally, the energy distribution of solar aircraft and long-time space flight has been discussed. J. Bangladesh Acad. Sci. 45(1); 73-83: June 2021


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hesong Li ◽  
Yi Wang ◽  
Yunfan Zhou ◽  
Shangcheng Xu ◽  
Dan Su

Periodic cruise has the potential to improve the fuel-saving efficiency of hypersonic cruise vehicle but is difficult to optimize. In this paper, a two-level optimization method for the trajectory of periodic cruise is proposed. Due to that the periodic cruise trajectory can be divided into an acceleration phase where engine works and a glide phase where engine is off, the two-level optimization method is proposed to optimize the trajectory in each phase by the corresponding level. In the first level, Downhill Simplex Method (DSM) is employed to find an optimal angle of attack in the acceleration phase. Subsequently, the optimal trajectory in glide phase is obtained by the Pseudo-Spectral Method (PSM) in the second optimization level. Numerical results demonstrate the effectiveness of the proposed method. Finally, through comparing with steady-state cruise, it is concluded that periodic cruise makes full use of the change of atmospheric density and lift-drag ratio; thus, fuel saving is achieved.


2021 ◽  
Vol 126 (4) ◽  
Author(s):  
Satoru Katsuda ◽  
Hitoshi Fujiwara ◽  
Yoshitaka Ishisaki ◽  
Maeda Yoshitomo ◽  
Koji Mori ◽  
...  

2021 ◽  
Author(s):  
Satoru Katsuda ◽  
Hitoshi Fujiwara ◽  
Yoshitaka Ishisaki ◽  
Yoshitomo Maeda ◽  
Koji Mori ◽  
...  

Author(s):  
Alan Cannell

Three genera of very large volant birds existed for most of the Pliocene: the Pelagornithidae seabirds; the large North American Teratornithidae and the stork Leptoptilos falconeri in Africa and Asia. All became extinct around 3 Ma. The reasons for their demise are puzzling, as the Pelagornithidae had a world-wide evolutionary history of more than 50 Ma, smaller teratorns were still extant in the Holocene and smaller stork species are still globally extant. Extant large birds have a common critical takeoff airspeed suggesting a biomechanical limit in terms of power, risk and launch speed, and simulations of the flight of these extinct species suggest that at 1 bar they would have exceeded this value. Estimates for the Late Pliocene atmospheric density are derived from marine and terrestrial isotopes as well as resin chemistry, both approaches suggesting a value of about 1.2 bar, which drops to present levels during the period 3.3 to 2.6 Ma, thus a loss in atmospheric density may have caused biomechanical and ecological stress contributing to their extinction and/or development of smaller forms. This hypothesis is examined in terms of a possible mechanism of atmospheric mass loss and how this would be seen in the geological record. At 1.2 bar all the extinct species present takeoff airspeeds similar to large extant volant birds and which match the expected power and kinetic energy levels.


Sign in / Sign up

Export Citation Format

Share Document