scholarly journals Bayesian Generalized Self Method to Estimate Scale Parameter of Invers Rayleigh Distribution

CAUCHY ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 270-278
Author(s):  
Ferra Yanuar ◽  
Rahmi Febriyuni ◽  
Izzati Rahmi HG

The purposes of this study are to estimate the scale parameter of Invers Rayleigh distribution under MLE and Bayesian Generalized square error loss function (SELF). The posterior distribution is considered to use two types of prior, namely Jeffrey’s prior and exponential distribution. The proposed methods are then employed in the real data. Several criteria for the selection model are considered in order to identify the method which results in a suitable value of parameter estimated. This study found that Bayesian Generalized SELF under Jeffrey’s prior yielded better estimation values that MLE and Bayesian Generalized SELF under exponential distribution.

2018 ◽  
Vol 28 (2) ◽  
pp. 162
Author(s):  
Huda A. Rasheed

In the current study, we have been derived some Basyian estimators for the parameter and relia-bility function of the inverse Rayleigh distribution under Generalized squared error loss function. In order to get the best understanding of the behavior of Bayesian analysis, we consider non-informative prior for the scale parameter using Jefferys prior Information as well as informative prior density represented by Gamma distribution. Monte-Carlo simulation have been employed to compare the behavior of different estimates for the scale parameter and reliability function of in-verse Rayleigh distribution based on mean squared errors and Integrated mean squared errors, respectively. In the current study, we observed that more occurrence of Bayesian estimate using Generalized squared error loss function using Gamma prior is better than other estimates for all cases


2016 ◽  
Vol 36 (3) ◽  
Author(s):  
Umesh Singh ◽  
Anil Kumar

This paper provides the estimation of the scale parameter of the exponential distribution under multiply type-II censoring. Using generalized non-informative prior and natural conjugate prior, Bayes estimator and approximate Bayes estimators of the scale parameter have been obtained under square error loss function. The proposed Bayes estimators and approximate Bayes estimators are compared with the estimators proposed by Singh et al. (2005) and Balasubramanian and Balakrishnan (1992) on the basis of theirsimulated risks under square error loss function of 1000 randomly generated Monte Carlo samples.


Author(s):  
Bashiru Omeiza Sule ◽  
Taiwo Mobolaji Adegoke ◽  
Kafayat Tolani Uthman

In this paper, Bayes estimators of the unknown shape and scale parameters of the Exponentiated Inverse Rayleigh Distribution (EIRD) have been derived using both the frequentist and bayesian methods. The Bayes theorem was adopted to obtain the posterior distribution of the shape and scale parameters of an Exponentiated Inverse Rayleigh Distribution (EIRD) using both conjugate and non-conjugate prior distribution under different loss functions (such as Entropy Loss Function, Linex Loss Function and Scale Invariant Squared Error Loss Function). The posterior distribution derived for both shape and scale parameters are intractable and a Lindley approximation was adopted to obtain the parameters of interest. The loss function were employed to obtain the estimates for both scale and shape parameters with an assumption that the both scale and shape parameters are unknown and independent. Also the Bayes estimate for the simulated datasets and real life datasets were obtained. The Bayes estimates obtained under dierent loss functions are close to the true parameter value of the shape and scale parameters. The estimators are then compared in terms of their Mean Square Error (MSE) using R programming language. We deduce that the MSE reduces as the sample size (n) increases.


2021 ◽  
Vol 50 (1) ◽  
pp. 59-73
Author(s):  
Young Eun Jeon ◽  
Suk-Bok Kang

We derive some estimators of the scale parameter of the Rayleigh distribution under the unified hybrid censoring scheme. We also derive some estimators of the reliability function and the entropy of the Rayleigh distribution. First, we obtain the maximum likelihood estimator of the scale parameter. Second, we obtain the Bayes estimator using the mean of the posterior distribution. Lastly, we obtain the Bayes estimator using the mode of the posterior distribution. We also derive the interval estimation (confidence interval, credible interval, and HPD credible interval) for the scale parameter under the unified hybrid censoring scheme. We compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation. Coverage probability and average lengths of 95 % and 90% intervals are obtained.


2020 ◽  
Vol 9 (2) ◽  
pp. 38
Author(s):  
Josphat. K. Kinyanjui ◽  
Betty. C. Korir

This paper develops a Bayesian analysis of the scale parameter in the Weibull distribution with a scale parameter  θ  and shape parameter  β (known). For the prior distribution of the parameter involved, inverted Gamma distribution has been examined. Bayes estimates of the scale parameter, θ  , relative to LINEX loss function are obtained. Comparisons in terms of risk functions of those under LINEX loss and squared error loss functions with their respective alternate estimators, viz: Uniformly Minimum Variance Unbiased Estimator (U.M.V.U.E) and Bayes estimators relative to squared error loss function are made. It is found that Bayes estimators relative to squared error loss function dominate the alternative estimators in terms of risk function.


2018 ◽  
Vol 31 (3) ◽  
pp. 135 ◽  
Author(s):  
Mohammed Jamel Ali ◽  
Hazim Mansoor Gorgees ◽  
Adel Abdul Kadhim Hussein

   In this paper, a Monte Carlo Simulation technique is used to compare the performance of the standard Bayes estimators of the reliability function of the one parameter exponential distribution .Three types of loss functions are adopted, namely, squared error  loss function (SELF) ,Precautionary error loss function (PELF) andlinear exponential error  loss function(LINEX) with informative and non- informative prior .The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Dinesh Barot ◽  
Manhar Patel

The comparison of empirical Bayes and generalized maximum likelihood estimates of reliability performances is made in terms of risk efficiencies when the data are progressively Type II censored from Rayleigh distribution. The empirical Bayes estimates are obtained using an asymmetric loss function. The risk functions of the estimates and risk efficiencies are obtained under this loss function. A real data set is presented to illustrate the proposed comparison method, and the performance of the estimates is examined and compared in terms of risk efficiencies by means of Monte Carlo simulations. The simulation results indicate that the proposed empirical Bayes estimates are more preferable than the generalized maximum likelihood estimates.


Sign in / Sign up

Export Citation Format

Share Document