COMPETITION FOR NUTRIENTS AND LIGHT: STABLE COEXISTENCE, ALTERNATIVE STABLE STATES, OR COMPETITIVE EXCLUSION?

2006 ◽  
Vol 76 (1) ◽  
pp. 57-72 ◽  
Author(s):  
Jutta Passarge ◽  
Suzanne Hol ◽  
Marieke Escher ◽  
Jef Huisman
Author(s):  
André M. de Roos ◽  
Lennart Persson

This chapter considers how stage structure and ontogenetic niche shifts may affect the coexistence between two consumer species competing for two resources in the absence and presence of predators, and how ontogenetic niche shifts may give rise to alternative stable states. More specifically, the analysis will use techniques developed within the consumer-resource framework of Tilman (1982), including consumption and renewal vectors (Schellekens, de Roos, and Persson 2010). Tilman showed that stable coexistence between consumers feeding on the same two resources is possible if each consumer species feeds proportionally more on the resource that limits its own growth most. Stable coexistence is, however, also affected by the form of resource-dependent growth isoclines, which represent combinations of resource densities that lead to equal population growth of consumers. It is shown that ontogenetic niche shifts per se affect the form of resource-dependent growth isoclines, which in turn may lead to coexistence through niche partitioning. The chapter also discusses how predation may promote the performance of a species undergoing ontogenetic niche shifts even in the case where it is both the inferior competitor and the preferred prey of the predator.


2019 ◽  
Author(s):  
Vilhelm L. Andersen Woltz ◽  
Clare I. Abreu ◽  
Jonathan Friedman ◽  
Jeff Gore

AbstractThe effect of environmental fluctuations is a major question in ecology. While it is widely accepted that fluctuations and other types of disturbances can increase biodiversity, we have only a limited understanding of the circumstances in which other types of outcomes can occur in a fluctuating environment. Here we explore this question with laboratory microcosms, using cocultures of two bacterial species, P. putida and P. veronii. At low dilution rates we observe competitive exclusion of P. veronii, whereas at high dilution rates we observe competitive exclusion of P. putida. When the dilution rate alternates between high and low, we do not observe coexistence between the species, but rather alternative stable states, in which only one species survives and initial species’ fractions determine the identity of the surviving species. The Lotka-Volterra model with a fluctuating mortality rate predicts that this outcome is independent of the timing of the fluctuations, and that the time-averaged mortality would also lead to alternative stable states, a prediction that we confirm experimentally. Other pairs of species can coexist in a fluctuating environment, and again consistent with the model we observe coexistence in the time-averaged dilution rate. We find a similar time-averaging result holds in a three-species community, highlighting that simple linear models can in some cases provide powerful insight into how communities will respond to environmental fluctuations.


2009 ◽  
Vol 18 (1) ◽  
pp. 159-173 ◽  
Author(s):  
Brian Beckage ◽  
Chris Ellingwood ◽  

Oikos ◽  
2005 ◽  
Vol 110 (2) ◽  
pp. 409-416 ◽  
Author(s):  
Raphael K. Didham ◽  
Corinne H. Watts ◽  
David A. Norton

2018 ◽  
Vol 116 (2) ◽  
pp. 689-694 ◽  
Author(s):  
Edward W. Tekwa ◽  
Eli P. Fenichel ◽  
Simon A. Levin ◽  
Malin L. Pinsky

Understanding why some renewable resources are overharvested while others are conserved remains an important challenge. Most explanations focus on institutional or ecological differences among resources. Here, we provide theoretical and empirical evidence that conservation and overharvest can be alternative stable states within the same exclusive-resource management system because of path-dependent processes, including slow institutional adaptation. Surprisingly, this theory predicts that the alternative states of strong conservation or overharvest are most likely for resources that were previously thought to be easily conserved under optimal management or even open access. Quantitative analyses of harvest rates from 217 intensely managed fisheries supports the predictions. Fisheries’ harvest rates also showed transient dynamics characteristic of path dependence, as well as convergence to the alternative stable state after unexpected transitions. This statistical evidence for path dependence differs from previous empirical support that was based largely on case studies, experiments, and distributional analyses. Alternative stable states in conservation appear likely outcomes for many cooperatively managed renewable resources, which implies that achieving conservation outcomes hinges on harnessing existing policy tools to navigate transitions.


2017 ◽  
Vol 105 (5) ◽  
pp. 1309-1322 ◽  
Author(s):  
Melisa Blackhall ◽  
Estela Raffaele ◽  
Juan Paritsis ◽  
Florencia Tiribelli ◽  
Juan M. Morales ◽  
...  

Ecosystems ◽  
2007 ◽  
Vol 10 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Bas W. Ibelings ◽  
Rob Portielje ◽  
Eddy H. R. R. Lammens ◽  
Ruurd Noordhuis ◽  
Marcel S. van den Berg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document