ontogenetic niche shift
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Brandon P. Hedrick ◽  
Emma R. Schachner ◽  
Peter Dodson

Author(s):  
Jaime Anaya-Rojas ◽  
Ronald Bassar ◽  
Blake Matthews ◽  
Joshua Goldberg ◽  
David Reznick ◽  
...  

In communities structured by body size, coexistence can occur through combinations of ontogenetic changes in competitive ability and dietary niche. Using stable isotopes, we examined ontogenetic niche shifts in Trinidadian guppies (Poecilia reticulata) and killifish (Rivulus hartii) in three types of natural communities (both species with predators, KGP; both without predators, KG; killifish only, KO) and four experimental KG communities, initiated with KGP guppies and KO killifish between 13 and 45 years ago. In all communities, killifish occupied higher trophic positions and changed their diet (δ^13 C) with body size. Only KGP guppies displayed an ontogenetic niche shift. The KG guppies displayed a significant difference in trophic niche from KGP guppies, a character displacement that can facilitate coexistence with killifish. In the experimental communities, the guppy trophic niche was intermediate between those in KGP and KG communities, indicating that evolution has driven the niche shift in KG guppies.


Author(s):  
Jaime Anaya-Rojas ◽  
Ronald Bassar ◽  
Blake Matthews ◽  
Joshua Goldberg ◽  
David Reznick ◽  
...  

In communities structured by body size, coexistence can occur through combinations of ontogenetic changes in competitive ability and dietary niche. Using stable isotopes, we examined ontogenetic niche shifts in Trinidadian guppies (Poecilia reticulata) and killifish (Rivulus hartii) in three types of natural communities (both species with predators, KGP; both without predators, KG; killifish only, KO) and four experimental KG communities, initiated with KGP guppies and KO killifish between 13 and 45 years ago. In all communities, killifish occupied higher trophic positions and changed their diet (δ^13 C) with body size. Only KGP guppies displayed an ontogenetic niche shift. The KG guppies displayed a significant difference in trophic niche from KGP guppies, a character displacement that can facilitate coexistence with killifish. In the experimental communities, the guppy trophic niche was intermediate between those in KGP and KG communities, indicating that evolution has driven the niche shift in KG guppies.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11245
Author(s):  
Péter Borza

Suspension feeders play pivotal roles in the nutrient cycling of almost all aquatic ecosystems. Since sufficiently large differences in the filter mesh size (FMS) can lead to different food web positions, the inter- and intraspecific variability of this trait might be of community-level importance. The aim of this study was to quantify the range of FMS variation within the three invasive Ponto-Caspian Chelicorophium species based on a large material representing various conditions (1,224 specimens from 40 samples across Central Europe), characterize the components of variation within populations, identify the main factors determining intraspecific differences, and reveal how intraspecific variation affects the FMS overlaps among species. The FMS of the most widespread invader, C. curvispinum, varied within the broadest range (between 2.34–8.28 μm, compared to 2.51–5.97 μm in C. robustum and 1.08–3.23 μm in C. sowinskyi); nevertheless, the contribution of intraspecific plasticity to the invasion success of the species is not evident based on the present study. The within-individual variability of FMS increased with the individual mean of the trait and decreased with body size; however, it showed little differences among samples. The among-individual variation within samples could be partitioned into components related to body size (ontogenetic niche shift/differences among cohorts) and sex (ecological sexual dimorphism) as well as a seemingly random component (individual specialization), varying widely in extent and relative contributions. The FMS of C. curvispinum was significantly larger in the presence of C. sowinskyi than in allopatry, likely reflecting character displacement; however, it did not show further increase when C. robustum was also present. Similar differences could not be observed in C. sowinskyi. The FMS ranges of C. curvispinum and C. robustum never overlapped with that of C. sowinskyi in co-occurrence despite the considerable intraspecific differences among sites, suggesting that their interaction can be seen as a clear case of niche differentiation by food particle size. On the contrary, the strong overlaps observed between C. curvispinum and C. robustum indicate that other factors might play the primary role in their coexistence. The studied species appear to be suitable model organisms for identifying the drivers and mechanisms of FMS variability.


Science ◽  
2021 ◽  
Vol 371 (6532) ◽  
pp. 941-944
Author(s):  
Katlin Schroeder ◽  
S. Kathleen Lyons ◽  
Felisa A. Smith

Despite dominating biodiversity in the Mesozoic, dinosaurs were not speciose. Oviparity constrained even gigantic dinosaurs to less than 15 kg at birth; growth through multiple morphologies led to the consumption of different resources at each stage. Such disparity between neonates and adults could have influenced the structure and diversity of dinosaur communities. Here, we quantified this effect for 43 communities across 136 million years and seven continents. We found that megatheropods (more than 1000 kg) such as tyrannosaurs had specific effects on dinosaur community structure. Although herbivores spanned the body size range, communities with megatheropods lacked carnivores weighing 100 to 1000 kg. We demonstrate that juvenile megatheropods likely filled the mesocarnivore niche, resulting in reduced overall taxonomic diversity. The consistency of this pattern suggests that ontogenetic niche shift was an important factor in generating dinosaur community structure and diversity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
G. F. Funston ◽  
P. J. Currie ◽  
M. J. Ryan ◽  
Z.-M. Dong

AbstractAvimimids were unusual, birdlike oviraptorosaurs from the Late Cretaceous of Asia. Initially enigmatic, new information has ameliorated the understanding of their anatomy, phylogenetic position, and behaviour. A monodominant bonebed from the Nemegt Formation of Mongolia showed that some avimimids were gregarious, but the site is unusual in the apparent absence of juveniles. Here, a second monodominant avimimid bonebed is described from the Iren Dabasu Formation of northern China. Elements recovered include numerous vertebrae and portions of the forelimbs and hindlimbs, representing a minimum of six individuals. Histological sampling of two tibiotarsi from the bonebed reveals rapid growth early in ontogeny followed by unexpectedly early onset of fusion and limited subsequent growth. This indicates that avimimids grew rapidly to adult size, like most extant birds but contrasting other small theropod dinosaurs. The combination of adults and juveniles in the Iren Dabasu bonebed assemblage provides evidence of mixed-age flocking in avimimids and the onset of fusion in young individuals suggests that some of the individuals in the Nemegt Formation bonebed may have been juveniles. Regardless, these individuals were likely functionally analogous to adults, and this probably facilitated mixed-age flocking by reducing ontogenetic niche shift in avimimids.


2018 ◽  
Author(s):  
Qing-Wei Meng ◽  
Qing-Yu Xu ◽  
Tao-Tao Zhu ◽  
Lin Jin ◽  
Kai-Yun Fu ◽  
...  

AbstractMany animals exploit several niches sequentially during their life cycles, a fitness referred to as ontogenetic niche shift (ONS). To successfully accomplish ONS, transition between development stages is often coupled with changes in one or more primitive, instinctive behaviors. Yet, the underlining molecular mechanisms remain elusive. We show here that Leptinotarsa decemlineata larvae finish their ONS at the wandering stage by leaving the plant and pupating in soil. At middle wandering phase, larvae also switch their phototactic behavior, from photophilic at foraging period to photophobic. We find that enhancement of juvenile hormone (JH) signal delays the phototactic switch, and vise verse. Moreover, RNA interference (RNAi)-aided knockdown of LdPTTH (prothoracicotropic hormone gene) or LdTorso (PTTH receptor gene) impairs avoidance response to light, a phenotype nonrescuable by 20-hydroxyecdysone. Consequently, the RNAi beetles pupate at the soil surface or in shallow layer of soil, with most of them failing to construct pupation chambers. Furthermore, a combination of depletion of LdPTTH/LdTorso and disturbance of JH signal causes no additional effects on light avoidance response and pupation site. Finally, we establish that TrpA1 (transient receptor potential (TRP) cation channel) is necessary for light avoidance behavior, acting downstream of PTTH. We conclude that JH/PTTH cascade concomitantly regulates metamorphosis and the phototaxis switch, to drive ONS of the wandering beetles from plant into soil to start the immobile pupal stage.Author summaryMany animals occupy distinct niches and utilize diverse resources at different development stages in order to meet stage-dependent requirements and overcome stage-specific limitations. This fitness is referred to as ontogenetic niche shift (ONS). During the preparation for ONS, animals often change one or more primitive, instinctive behaviors. Holometabolous insects, with four discrete developmental periods usually in different niches, are a suitable animal group to explore the molecular modes of these behavioral switches. Here we find that Leptinotarsa decemlineata larvae, an insect defoliator of potatoes, switch their phototactic behavior, from photophilic at feeding period to photophobic during the larval-pupal transition (wandering stage). This phototactic switch facilitates the wandering larvae to accomplish the ONS from potato plant to their pupation site below ground. We show that JH/PTTH cascade controls the phototaxis switch, through a step in photo transduction between the photoreceptor molecule and the transient receptor potential cation channel.


Sign in / Sign up

Export Citation Format

Share Document