scholarly journals A PEAK SHIFT ON A LINE-TILT CONTINUUM1

1967 ◽  
Vol 10 (4) ◽  
pp. 361-366 ◽  
Author(s):  
T. M. Bloomfield
Keyword(s):  
1977 ◽  
Vol 45 (3_suppl) ◽  
pp. 1187-1201 ◽  
Author(s):  
Frances Leivo Everett

The role of errors in children's discrimination learning was explored. 108 second grade children mastered simultaneous intradimensional discriminations (line tilts) or interdimensional discriminations (line tilt and dot) in either an errorful or errorless fashion. Errorful learners acquired the discriminations with a trial and error procedure. Errorless learning was experimentally produced by use of a progressive S— fading procedure. Following acquisition all children received generalization tests along the line-tilt continuum. The post-discrimination generalization gradients for children trained on the intradimensional tasks demonstrated negative peak-shift effects and no positive peak-shift effects. The S— post-discrimination generalization gradients for children trained on the interdimensional tasks were flat indicating no S— control. No differences were noted in the post-discrimination generalization gradients for the errorful and errorless learners. It was concluded that young children can master a simultaneous discrimination without noticeable S— control and that making errors or responding to S— during simultaneous discrimination acquisition is not a sufficient condition for the establishment of S— dimensional control.


1979 ◽  
Vol 48 (2) ◽  
pp. 671-677 ◽  
Author(s):  
Gary B. Nallan ◽  
D. F. Mc Coy ◽  
Gary M. Pace ◽  
Robin Welch

Three pigeons were trained on a differential, intradimensional autoshaped discrimination. A 45° line tilt was always paired with food whereas a 15° line tilt was never paired with food. All subjects learned the discrimination within 17 sessions. The pigeons were then given generalization tests in extinction over seven line tilts (0°, 15°, 30°, 45°, 60°, 75°, and 90°). The subjects yielded generalization gradients with maxima at 45° and minima at 15°. An area shift, but no peak shift, was found for each subject.


2009 ◽  
Author(s):  
Matthew G. Wisniewski ◽  
Barbara A. Church ◽  
Eduardo Mercado
Keyword(s):  

2008 ◽  
Author(s):  
Matthew G. Wisniewski ◽  
Barbara A. Church ◽  
Eduardo Mercado

2019 ◽  
Vol 31 (6) ◽  
pp. 857-864 ◽  
Author(s):  
Hiroki Oba ◽  
Jun Takahashi ◽  
Sho Kobayashi ◽  
Tetsuro Ohba ◽  
Shota Ikegami ◽  
...  

OBJECTIVEUnfused main thoracic (MT) curvatures occasionally increase after selective thoracolumbar/lumbar (TL/L) fusion. This study sought to identify the predictors of an unacceptable increase in MT curve (UIMT) after selective posterior fusion (SPF) of the TL/L curve in patients with Lenke type 5C adolescent idiopathic scoliosis (AIS).METHODSForty-eight consecutive patients (44 females and 4 males, mean age 15.7 ± 2.5 years, range 13–24 years) with Lenke type 5C AIS who underwent SPF of the TL/L curve were analyzed. The novel “Shinshu line” (S-line) was defined as a line connecting the centers of the concave-side pedicles of the upper instrumented vertebra (UIV) and lowest instrumented vertebra (LIV) on preoperative radiographs. The authors established an S-line tilt to the right as S-line positive (S-line+, i.e., the UIV being to the right of the LIV) and compared S-line+ and S-line− groups for thoracic apical vertebral translation (T-AVT) and MT Cobb angle preoperatively, early postoperatively, and at final follow-up. The predictors for T-AVT > 20 mm at final follow-up were evaluated as well. T-AVT > 20 mm was defined as a UIMT.RESULTSAmong the 48 consecutively treated patients, 26 were S-line+ and 22 were S-line−. At preoperative, early postoperative, and final follow-up a minimum of 2 years later, the mean T-AVT was 12.8 mm (range −9.3 to 32.8 mm), 19.6 mm (range −13.0 to 41.0 mm), and 22.8 mm (range −1.9 to 68.7 mm) in the S-line+ group, and 10.8 mm (range −5.1 to 27.3 mm), 16.2 mm (range −11.7 to 42.1 mm), and 11.0 mm (range −6.3 to 26.9 mm) in the S-line− group, respectively. T-AVT in S-line+ patients was significantly larger than that in S-line− patients at the final follow-up. Multivariate analysis revealed S-line+ (odds ratio [OR] 23.8, p = 0.003) and preoperative MT Cobb angle (OR 7.9, p = 0.001) to be predictors of a UIMT.CONCLUSIONSS-line+ was defined as the UIV being to the right of the LIV. T-AVT in the S-line+ group was significantly larger than in the S-line− group at the final follow-up. S-line+ status and larger preoperative MT Cobb angle were independent predictors of a UIMT after SPF for the TL/L curve in patients with Lenke type 5C AIS. Surgeons should consider changing the UIV and/or LIV in patients exhibiting S-line+ during preoperative planning to avoid a possible increase in MT curve and revision surgery.


2020 ◽  
Vol 26 (31) ◽  
pp. 3828-3833 ◽  
Author(s):  
Tuula Peñate-Medina ◽  
Eike Kraas ◽  
Kunliang Luo ◽  
Jana Humbert ◽  
Hanwen Zhu ◽  
...  

Background: Nanoparticle imaging and tracking the release of the loaded material from the nanoparticle system have attracted significant attention in recent years. If the release of the loaded molecules could be monitored reliably in vivo, it would speed up the development of drug delivery systems remarkably. Methods: Here, we test a system that uses indocyanine green (ICG) as a fluorescent agent for studying release kinetics in vitro and in vivo from the lipid iron nanoparticle delivery system. The ICG spectral properties like its concentration dependence, sensitivity and the fluctuation of the absorption and emission wavelengths can be utilized for gathering information about the change of the ICG surrounding. Results: We have found that the absorption, fluorescence, and photoacoustic spectra of ICG in lipid iron nanoparticles differ from the spectra of ICG in pure water and plasma. We followed the ICG containing liposomal nanoparticle uptake into squamous carcinoma cells (SCC) by fluorescence microscopy and the in vivo uptake into SCC tumors in an orthotopic xenograft nude mouse model under a surgical microscope. Conclusion: Absorption and emission properties of ICG in the different solvent environment, like in plasma and human serum albumin, differ from those in aqueous solution. Photoacoustic spectral imaging confirmed a peak shift towards longer wavelengths and an intensity increase of ICG when bound to the lipids. The SCC cells showed that the ICG containing liposomes bind to the cell surface but are not internalized in the SCC-9 cells after 60 minutes of incubation. We also showed here that ICG containing liposomal nanoparticles can be traced under a surgical camera in vivo in orthotopic SCC xenografts in mice.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yudai Ichikawa ◽  
Junko Yamagata-Sekihara ◽  
Jung Keun Ahn ◽  
Yuya Akazawa ◽  
Kanae Aoki ◽  
...  

Abstract We have measured, for the first time, the inclusive missing-mass spectrum of the $^{12}$C$(K^-, p)$ reaction at an incident kaon momentum of 1.8 GeV/$c$ at the J-PARC K1.8 beamline. We observed a prominent quasi-elastic peak ($K^-p \rightarrow K^-p$) in this spectrum. In the quasi-elastic peak region, the effect of secondary interaction is apparently observed as a peak shift, and the peak exhibits a tail in the bound region. We compared the spectrum with a theoretical calculation based on the Green’s function method by assuming different values of the parameters for the $\bar{K}$–nucleus optical potential. We found that the spectrum shape in the binding-energy region $-300 \, \text{MeV} < B_{K} < 40$ MeV is best reproduced with the potential depths $V_0 = -80$ MeV (real part) and $W_0 = -40$ MeV (imaginary part). On the other hand, we observed a significant event excess in the deeply bound region around $B_{K} \sim 100$ MeV, where the major decay channel of $K^- NN \to \pi\Sigma N$ is energetically closed, and the non-mesonic decay modes ($K^- NN \to \Lambda N$ and $\Sigma N$) should mainly contribute. The enhancement is fitted well by a Breit–Wigner function with a kaon-binding energy of 90 MeV and width 100 MeV. A possible interpretation is a deeply bound state of a $Y^{*}$-nucleus system.


Author(s):  
Hirotaka Takahashi ◽  
Katsuhiro Matsuda ◽  
Yasushi Tomita ◽  
Takashi Oda ◽  
Eri Isozaki

2021 ◽  
Vol 13 (12) ◽  
pp. 6777
Author(s):  
Masanobu Kii ◽  
Yuki Goda ◽  
Varameth Vichiensan ◽  
Hiroyuki Miyazaki ◽  
Rolf Moeckel

Reducing congestion has been one of the critical targets of transportation policies, particularly in cities in developing countries suffering severe and chronic traffic congestions. Several traditional measures have been in place but seem not very successful. This paper applies the agent-based transportation model MATSim for a transportation analysis in Bangkok to assess the impact of spatiotemporal transportation demand management measures. We collect required data for the simulation from various data sources and apply maximum likelihood estimation with the limited data available. We investigate two demand management scenarios, peak time shift, and decentralization. As a result, we found that these spatiotemporal peak shift measures are effective for road transport to alleviate congestion and reduce travel time. However, the effect of those measures on public transport is not uniform but depends on the users’ circumstances. On average, the simulated results indicate that those measures increase the average travel time and distance. These results suggest that demand management policies require considerations of more detailed conditions to improve usability. The study also confirms that microsimulation can be a tool for transport demand management assessment in developing countries.


2020 ◽  
Vol 1004 ◽  
pp. 393-400
Author(s):  
Tuerxun Ailihumaer ◽  
Hongyu Peng ◽  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
Gilyong Chung ◽  
...  

Synchrotron monochromatic beam X-ray topography (SMBXT) in grazing incidence geometry shows black and white contrast for basal plane dislocations (BPDs) with Burgers vectors of opposite signs as demonstrated using ray tracing simulations. The inhomogeneous distribution of these dislocations is associated with the concave/convex shape of the basal plane. Therefore, the distribution of these two BPD types were examined for several 6-inch diameter 4H-SiC substrates and the net BPD density distribution was used for evaluating the nature and magnitude of basal plane bending in these wafers. Results show different bending behaviors along the two radial directions - [110] and [100] directions, indicating the existence of non-isotropic bending. Linear mapping of the peak shift of the 0008 reflection along the two directions was carried out using HRXRD to correlate with the results from the SMBXT measurements. Basal-plane-tilt angle calculated using the net BPD density derived from SMBXT shows a good correlation with those obtained from HRXRD measurements, which further confirmed that bending in basal plane is caused by the non-uniform distribution of BPDs. Regions of severe bending were found to be associated with both large tilt angles (95% black contrast BPDs to 5% white contrast BPDs) and abrupt changes in a and c lattice parameters i.e. local strain.


Sign in / Sign up

Export Citation Format

Share Document