scholarly journals Steganography Based Secure Data Storage and Intrusion Detection for Cloud Computing Using Signcryption and Artificial Neural Network

2016 ◽  
Vol 13 (5) ◽  
pp. 354-364 ◽  
Author(s):  
J. Anitha Ruth ◽  
H. Sirmathi ◽  
A. Meenakshi
Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


2016 ◽  
Author(s):  
Lília de Sá Silva ◽  
Adriana C. F. dos Santos ◽  
J. Demísio S. da Silva ◽  
Antonio Montes

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chao Wang ◽  
Bailing Wang ◽  
Yunxiao Sun ◽  
Yuliang Wei ◽  
Kai Wang ◽  
...  

The security of industrial control systems (ICSs) has received a lot of attention in recent years. ICSs were once closed networks. But with the development of IT technologies, ICSs have become connected to the Internet, increasing the potential of cyberattacks. Because ICSs are so tightly linked to human lives, any harm to them could have disastrous implications. As a technique of providing protection, many intrusion detection system (IDS) studies have been conducted. However, because of the complicated network environment and rising means of attack, it is difficult to cover all attack classes, most of the existing classification techniques are hard to deploy in a real environment since they cannot deal with the open set problem. We propose a novel artificial neural network based-methodology to solve this problem. Our suggested method can classify known classes while also detecting unknown classes. We conduct research from two points of view. On the one hand, we use the openmax layer instead of the traditional softmax layer. Openmax overcomes the limitations of softmax, allowing neural networks to detect unknown attack classes. During training, on the other hand, a new loss function termed center loss is implemented to improve detection ability. The neural network model learns better feature representations with the combined supervision of center loss and softmax loss. We evaluate the neural network on NF-BoT-IoT-v2 and Gas Pipeline datasets. The experiments show our proposed method is comparable with the state-of-the-art algorithm in terms of detecting unknown classes. But our method has a better overall classification performance.


Sign in / Sign up

Export Citation Format

Share Document