scholarly journals Dental Stem Cells- Application In Dental Research And Therapeutic Implication

Author(s):  
Monica Charlotte Solomon ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 599-613 ◽  
Author(s):  
Siti Nurnasihah Md Hashim ◽  
Muhammad Fuad Hilmi Yusof ◽  
Wafa’ Zahari ◽  
Hamshawagini Chandra ◽  
Khairul Bariah Ahmad Amin Noordin ◽  
...  

2015 ◽  
Vol 90 (1-3) ◽  
pp. 48-58 ◽  
Author(s):  
Young-Hoon Kang ◽  
Hye-Jin Lee ◽  
Si-Jung Jang ◽  
June-Ho Byun ◽  
Jong-Sil Lee ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Maurizio Bossù ◽  
Andrea Pacifici ◽  
Daniele Carbone ◽  
Gianluca Tenore ◽  
Gaetano Ierardo ◽  
...  

In dental practice there is an increasing need for predictable therapeutic protocols able to regenerate tissues that, due to inflammatory or traumatic events, may suffer from loss of their function. One of the topics arising major interest in the research applied to regenerative medicine is represented by tissue engineering and, in particular, by stem cells. The study of stem cells in dentistry over the years has shown an exponential increase in literature. Adult mesenchymal stem cells have recently been isolated and characterized from tooth-related tissues and they might represent, in the near future, a new gold standard in the regeneration of all oral tissues. The aim of our review is to provide an overview on the topic reporting the current knowledge for each class of dental stem cells and to identify their potential clinical applications as therapeutic tool in various branches of dentistry.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Thekkeparambil Chandrabose Srijaya ◽  
Padmaja Jayaprasad Pradeep ◽  
Rosnah Binti Zain ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim ◽  
...  

Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC linesin vitrofrom patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.


Cell Cycle ◽  
2015 ◽  
Vol 14 (21) ◽  
pp. 3396-3407 ◽  
Author(s):  
Zhaosong Meng ◽  
Guoqing Chen ◽  
Jinlong Chen ◽  
Bo Yang ◽  
Mei Yu ◽  
...  

Stem Cells ◽  
2020 ◽  
pp. 193-216
Author(s):  
Mary L. Clarke ◽  
Jonathan Frampton
Keyword(s):  

Biochimie ◽  
2018 ◽  
Vol 155 ◽  
pp. 129-139 ◽  
Author(s):  
Ajay Kumar ◽  
Vinod Kumar ◽  
Vidya Rattan ◽  
Vivekananda Jha ◽  
Shalmoli Bhattacharyya

2008 ◽  
Vol 55 (3) ◽  
pp. 170-179 ◽  
Author(s):  
Vera Todorovic ◽  
Dejan Markovic ◽  
Nadezda Milosevic-Jovcic ◽  
Marijana Petakov ◽  
Bela Balint ◽  
...  

To date, three types of dental stem cells have been isolated: Dental Pulp Stem Cells (DPSC), Stem Cells From Human Exfoliated Deciduous Teeth (SHED) and Immature Dental Pulp Stem Cells (IDPC). These dental stem cells are considered as mesenchymal stem cells. They reside within the perivascular niche of dental pulp. They are highly proliferative, clonogenic, multipotent and are similar to mesenchymal Bone Marrow Stem Cells (BMSC). Also, they have high plasticity and can be easy isolated. The expressions of the alkaline phosphatase gene, dentin matrix protein 1 and dentinsialophosphoprotein are verified in these cells. Analyses of gene expression patterns indicated several genes which encode extracellular matrix components, cell adhesion molecules, growth factors and transcription regulators, cell signaling, cell communication or cell metabolism. In both conditions, in vivo and in vitro, these cells have the ability to differentiate into odontoblasts, chondrocytes, osteoblasts, adipocytes, neurons, melanocytes, smooth and skeletal muscles and endothelial cells. In vivo, after implantation, they have shown potential to differentiate into dentin but also into tissues like bone, adipose or neural tissue. In general, DPSCs are considered to have antiinflammatory and immunomodulatory abilities. After being grafted into allogenic tissues these cells are ableto induce immunological tolerance. Immunosuppressive effect is shown through the ability to inhibit proliferation of T lymphocytes. Dental pulp stem cells open new perspectives in therapeutic use not only in dentin regeneration, periodontal tissues and skeletoarticular, tissues of craniofacial region but also in treatment of neurotrauma, autoimmune diseases, myocardial infarction, muscular dystrophy and connective tissue damages.


Sign in / Sign up

Export Citation Format

Share Document