scholarly journals Experimental Investigation of Gamma Radiation Attenuation Coefficients for Kırklareli Marble

Author(s):  
Nimet ZAIM ◽  
Duygu HATIPOGLU
2019 ◽  
Vol 107 (4) ◽  
pp. 339-348 ◽  
Author(s):  
Mohammed I. Sayyed ◽  
Ferdi Akman ◽  
Mustafa Recep Kaçal

Abstract Recently, technologists try to develop novel gamma radiation shielding materials instead of traditional materials such as lead and concrete with improved performance in gamma radiation shielding in medical applications and nuclear reactors. For this purpose, alloys such as stainless steel (SS) and carbon steel (CS) attracted much attention, these days. Preliminary results on such alloys have shown better attenuation of γ rays as compared to traditional shielding materials. This work aimed to conduct research on different alloy samples to evaluate their radiation attenuation efficiency and their suitability for radiation shielding when utilized in nuclear facilities. The mass attenuation coefficients for eight alloy samples were measured at different photon energies ranging from 80.997 to 1332.501 keV using transmission geometry. From the mass attenuation coefficients, different photon attenuation parameters such as half value layer, mean free path, effective atomic number, and radiation protection efficiency were evaluated. In addition, the equivalent atomic number and the exposure buildup factor were calculated using G-P fitting method for photon energy ranging from 0.015 MeV to 15 MeV at different penetration depth. The results showed that the Zeff values remain almost constant for all samples except W72/Cu28 in which the Zeff for this sample tends to decrease with the energy. The lowest value of half value layer is found for the alloy sample Ta97.5/W2.5 and the highest value is found for the alloy sample In50/Sn50. The Ta97.5/W2.5, Ta90/W10, Ta95/W5 samples demonstrated good radiation attenuation properties.


2021 ◽  
Vol 11 (15) ◽  
pp. 6837
Author(s):  
Ghada ALMisned ◽  
Huseyin O. Tekin ◽  
Esra Kavaz ◽  
Ghaida Bilal ◽  
Shams A.M. Issa ◽  
...  

The purpose of this research was to investigate the shielding characteristics of high-amount heavy metal oxide and Eu3+-activated borate glasses based on 10La2O3–50HMO–(40–x) B2O3–xEu2O3 (x = 0, 0.5, 1, 2, and HMO = PbO, Bi2O3). Critical gamma radiation attenuation characteristics, particularly mass attenuation coefficients of investigated heavy metal oxide glass samples, were determined using Monte Carlo simulations and the Phy-x/PSD software. Following that, we looked at the half-value layer, mean free path, effective atomic number, and build-up factors across a broad energy range (0.015–15 MeV). According to the study’s results, the addition of Eu2O3 enhanced the mass attenuation coefficient and effective atomic number, while reducing the half-value layer, mean free path, and accumulation factors. In terms of gamma radiation attenuation, the LBi50BEu glass system surpassed the LPb50BEu glass system in terms of overall shielding properties against nuclear radiation. Additionally, the heavy metal oxide glass’ efficacy as a neutron shield was determined using fast neutron removal cross-sections (ΣR). LBi50BEu2 glass was shown to be more effective in preventing the penetration of charged particle radiation.


2017 ◽  
Author(s):  
F. C. Cione ◽  
A. C. Souza ◽  
F. F. Sene ◽  
M. P. Gomes ◽  
E. P. Soares ◽  
...  

2019 ◽  
Vol 782 ◽  
pp. 315-322 ◽  
Author(s):  
F. Akman ◽  
M.R. Kaçal ◽  
M.I. Sayyed ◽  
H.A. Karataş

2020 ◽  
Vol 545 ◽  
pp. 120250 ◽  
Author(s):  
Kawa M. Kaky ◽  
M.I. Sayyed ◽  
M.H.A. Mhareb ◽  
Alyaa H. Abdalsalam ◽  
K.A. Mahmoud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document