scholarly journals Analytical Evaluation of the 2D-DCT using paralleling processing

1998 ◽  
Vol 1 (1) ◽  
Author(s):  
Angela Di Serio

One of the current research areas in the field of computer science is distributed computing systems. In distributed systems, software is partitioned into modules and executed using a number of processors concurrently. A major difficulty in using distributed and paralleling computing systems has been ease of use. There is not a clear methodology for programmers for using these systems effectively. This work seeks to assess the viability of using analytic performance analysis to assist in the evaluation of candidate algorithms through its application to a case study. This will help us to estimate the total execution time and the optimal number of processors.

Author(s):  
Tevfik Kosar

As the data requirements of scientific distributed applications increase, the access to remote data becomes the main performance bottleneck for these applications. Traditional distributed computing systems closely couple data placement and computation, and consider data placement as a side effect of computation. Data placement is either embedded in the computation and causes the computation to delay, or performed as simple scripts which do not have the privileges of a job. The insufficiency of the traditional systems and existing CPU-oriented schedulers in dealing with the complex data handling problem has yielded a new emerging era: the data-aware schedulers. This chapter discusses the challenges in this area as well as future trends, with a focus on Stork case study.


2020 ◽  
Vol 13 (3) ◽  
pp. 313-318 ◽  
Author(s):  
Dhanapal Angamuthu ◽  
Nithyanandam Pandian

<P>Background: The cloud computing is the modern trend in high-performance computing. Cloud computing becomes very popular due to its characteristic of available anywhere, elasticity, ease of use, cost-effectiveness, etc. Though the cloud grants various benefits, it has associated issues and challenges to prevent the organizations to adopt the cloud. </P><P> Objective: The objective of this paper is to cover the several perspectives of Cloud Computing. This includes a basic definition of cloud, classification of the cloud based on Delivery and Deployment Model. The broad classification of the issues and challenges faced by the organization to adopt the cloud computing model are explored. Examples for the broad classification are Data Related issues in the cloud, Service availability related issues in cloud, etc. The detailed sub-classifications of each of the issues and challenges discussed. The example sub-classification of the Data Related issues in cloud shall be further classified into Data Security issues, Data Integrity issue, Data location issue, Multitenancy issues, etc. This paper also covers the typical problem of vendor lock-in issue. This article analyzed and described the various possible unique insider attacks in the cloud environment. </P><P> Results: The guideline and recommendations for the different issues and challenges are discussed. The most importantly the potential research areas in the cloud domain are explored. </P><P> Conclusion: This paper discussed the details on cloud computing, classifications and the several issues and challenges faced in adopting the cloud. The guideline and recommendations for issues and challenges are covered. The potential research areas in the cloud domain are captured. This helps the researchers, academicians and industries to focus and address the current challenges faced by the customers.</P>


2021 ◽  
Vol 11 (6) ◽  
pp. 2568
Author(s):  
Benjamin Kromoser ◽  
Matthias Braun ◽  
Maximilian Ortner

Timber truss systems are very efficient load-bearing structures. They allow for great freedom in design and are characterised by high material use in combination with a low environmental impact. Unfortunately, the extensive effort in design and production have made the manufacturing and application of these structures, in this day and age, a rarity. In addition, the currently mainly used steel gusset plates adversely affect the costs and environmental impact of the trusses. The authors’ goals are to optimise the design of timber trusses and to solely use wood for all building components. The two research areas, (1) optimisation of the truss geometry and (2) optimisation of the joints by using solely wood–wood connections, are addressed in this paper. The numerical optimisation strategy is based on a parametric design of the truss and the use of a genetic solver for the optimisation regarding minimal material consumption. Furthermore, first results of the tensile and compression behaviour of the chosen wood–wood connections are presented. The basic idea for the joints is to use a plywood plate as a connector, which is inserted into the truss members and fixed with wooden pegs. The housing of the new robot laboratory located at BOKU Vienna is considered a special case study for the research and serves as an accompanying example for the application of the research within the present paper.


Author(s):  
Sururin ◽  
Munzier Suparta ◽  
Herlino Nanang ◽  
Amelia Zakiyyatun Nufus ◽  
Kamarusdiana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document