scholarly journals Performance Evaluation of Survivability Strategies for Elastic Optical Networks under Physical Layer Impairments

2017 ◽  
Vol 20 (2) ◽  
Author(s):  
Jurandir Lacerda Jr ◽  
Alexandre Fontinele ◽  
Igo Moura ◽  
André Soares

This paper carried out a performance evaluation study that compares two survivability strategies (DPP and SM-RSA) for elastic optical networks with and without physical layer impairments. The evaluated scenarios include three representative topologies for elastic optical network, NSFNET, EON and USA. It also analyzes the increase of blocking probability when the survivability strategies are evaluated under the realistic scenario that assumes physical layer impairments. For all studied topologies under physical layer impairments, the survivability strategies achieved blocking probability above 80%.

Photonics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 64 ◽  
Author(s):  
Emanuele Virgillito ◽  
Alessio Ferrari ◽  
Andrea D’Amico ◽  
Vittorio Curri

In order to cope with the increase of the final user traffic, operators and vendors are pushing towards physical layer aware networking as a way to maximize the network capacity. To this aim, optical networks are becoming more and more open by exposing physical parameters enabling fast and reliable estimation of the lightpath quality of transmission. This comes in handy not only from the point of view of the planning and managing of the optical paths but also on a more general picture of the whole optical network performance. In this work, the Statistical Network Assessment Process (SNAP) is presented. SNAP is an algorithm allowing for estimating different network metrics such as blocking probability or link saturation, by generating traffic requests on a graph abstraction of the physical layer. Being aware of the physical layer parameters and transceiver technologies enables assessing their impact on high level network figures of merit. Together with a detailed description of the algorithm, we present a comprehensive review of several results on the networking impact of multirate transceivers, flex-grid spectral allocation as a means to finely exploit lightpath capacity and of different Space Division Multiplexing (SDM) solutions.


2017 ◽  
Vol 38 (4) ◽  
Author(s):  
Jijun Zhao ◽  
Nawa Zhang ◽  
Danping Ren ◽  
Jinhua Hu

AbstractThe recently proposed flexible optical network can provide more efficient accommodation of multiple data rates than the current wavelength-routed optical networks. Meanwhile, the energy efficiency has also been a hot topic because of the serious energy consumption problem. In this paper, the energy efficiency problem of flexible optical networks with physical-layer impairments constraint is studied. We propose a combined impairment-aware and energy-efficient routing and spectrum assignment (RSA) algorithm based on the link availability, in which the impact of power consumption minimization on signal quality is considered. By applying the proposed algorithm, the connection requests are established on a subset of network topology, reducing the number of transitions from sleep to active state. The simulation results demonstrate that our proposed algorithm can improve the energy efficiency and spectrum resources utilization with the acceptable blocking probability and average delay.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Ujjwal ◽  
Jaisingh Thangaraj

Abstract In this paper, an algorithm for multipath connection provisioning in elastic optical network (EON) has been proposed. Initially, the algorithm prefers the single-path routing for service provisioning. But when single-path routing is not adequate to serve a dynamic connection, the algorithm switches to the connection request fragmentation. Its computation is based on the parameters such as capacity_constant and capacity_allowed to fragment the connection request on disjoint paths. Simulation results clearly state that the proposed algorithm performs well in service provisioning as compared to the traditional single-path routing algorithms and improves the average network throughput. Thereafter, we have investigated the limitation of Erlang B traffic model in EON for calculation of link blocking probability using routing and spectrum assignment (RSA) algorithm. It is verified by the following two ways: (i) effect on the blocking probability in case of constant load and (ii) effect of slot width on the blocking probability. Our simulation results indicate that in EON due to dynamic RSA, blocking probability is not constant in case of proportionate varying of call arrival and service rate giving constant load and blocking probability depends on the number of slots per link, but in Erlang B traffic model blocking probability is always constant in case of constant load and it considers wavelength per link instead of slots per link. This is attributed to the fact that Erlang B traffic model fails to calculate blocking probability accurately in EON. We have computed the carried traffic on 14 nodes, 21-link National Science Foundation Network (NSFNET) topology.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 456
Author(s):  
Shengyu Zhang ◽  
Kwan Lawrence Yeung ◽  
Along Jin

We consider a space-division multiplexing elastic optical network (SDM-EON) that supports super-channels (SChs). A Sch comprises a set of contiguous frequency slots on multiple cores in a multi-core fiber. The problem of finding a lightpath using SChs involves routing, modulation, spectrum and core assignment (RMSCA). To minimize the request blocking probability (RBP), two critical issues must be addressed. First, routing and modulation assignment (RMA) should not cause hotspots, or overutilized links. Second, spectrum and core assignment (SCA) should aim at minimizing fragmentation, or small frequency slot blocks that can hardly be utilized by future requests. In this paper, a pre-computation method is first proposed for better load balancing in RMA. Then an efficient fragmentation-aware SCA is proposed based on a new fragmentation metric that measures both the spectral and spatial fragmentation. With the enhanced RMA and SCA, a joint load-balanced and fragmentation-aware algorithm called LBFA is designed to solve the RMSCA problem. As compared with the existing algorithms, simulation results show that our LBFA provides significant reduction in RBP.


2013 ◽  
Vol 9 (2) ◽  
pp. 1055-1062
Author(s):  
Ifrah Amin ◽  
Gulzar Ahmad dar ◽  
Hrdeep singh Saini

Routing and wavelength assignment problem is one of the main problem in optical networks. The foremost problem is the routing problem after which the wavelength assignment is to be decided. In this paper we have proposed a routing strategy for optimization of the performance of the optical network in terms of blocking probability. The strategy proposed is better than the conventional algorithm in terms of blocking. 


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Sridhar Iyer

AbstractIn this article, we focus on the optimization of lightpath routing in an online Space Division Multiplexing-based Elastic Optical Network (SDM-b-EON) which is protected by the dedicated route protection (DRP) strategy. In view of the aforementioned, the Online Protection and Routing Algorithm with Regeneration (OPaRAwR) method is proposed which (i) protects the lightpaths through DRP, (ii) accounts for the presence of transceivers in the network, and (iii) ensures the routing of translucent lightpaths through the spectral super-channels over the spatial modes links. In regard to regeneration, we investigate two scenarios which differ in their regeneration variability level in addition to the adjustment of modulation formats (MFs) as per the transmission route characteristics. Extensive simulation experiments are conducted considering realistic transmission reach values and two realistic network topologies. The obtained simulation results demonstrate that the proposed OPaRAwR method significantly outperforms various reference techniques in terms of bandwidth blocking probability (BwBP). In addition, the results also show that significant benefits can be obtained in regard to the utilization of resources (spectrum and transceivers) with much lesser BwBP when the regeneration is conducted with complete flexibility and MF conversion is also permitted at every node of the SDM-b-EON.


Computing ◽  
2014 ◽  
Vol 97 (10) ◽  
pp. 1023-1044 ◽  
Author(s):  
Ioannis K. Chaniotis ◽  
Kyriakos-Ioannis D. Kyriakou ◽  
Nikolaos D. Tselikas

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Li Li ◽  
Zhai Ya-Fang ◽  
Li Hong-Jie

AbstractWith the rapid development of mobile Internet, high-definition video and cloud computing, users’ bandwidth demands are not only larger and larger but also more and more diverse. To solve this problem, there searchers put forward the concept of elastic optical network (EON). EON adopts the transmission mode of elastic grid, which can allocate spectrum resources flexibly and meet high bandwidth and diversity requirements at the same time. Routing and spectrum allocation (RSA) is an important issue in EON. In this paper, we present a heuristic algorithm named constrained-lower-indexed-block (CLIB) allocation algorithm for the RSA problem. The algorithm is based on the K candidate paths. When there are available spectrum blocks on multiple candidate paths, if the increase of the path length does not exceed a given threshold, the lower index spectrum would be selected for the connection request on a longer path. The aim of the algorithm is to concentrate the occupied frequency slices on one side of the spectrum and leave another side of the spectrum to the later arrived connection requests as much as possible, to reduce the blocking probability of connection requests. Simulation results show that comparing with the first-last-fit and hybrid grouping algorithms, the CLIB algorithm can reduce the blocking probability of connection requests.


Sign in / Sign up

Export Citation Format

Share Document