scholarly journals Routing Strategies in Survivable Optical Networks

2013 ◽  
Vol 9 (2) ◽  
pp. 1055-1062
Author(s):  
Ifrah Amin ◽  
Gulzar Ahmad dar ◽  
Hrdeep singh Saini

Routing and wavelength assignment problem is one of the main problem in optical networks. The foremost problem is the routing problem after which the wavelength assignment is to be decided. In this paper we have proposed a routing strategy for optimization of the performance of the optical network in terms of blocking probability. The strategy proposed is better than the conventional algorithm in terms of blocking. 

Current research interests have diverted towards the efficient priority-based routing and wavelength assignment strategy in order to enhance the quality of service in the distributed optical networks. The traditional RWA techniques such as Adaptive Routing (AR), Non priority based RWA schemes etc. are lacking of capability to reduce both the blocking probability and average end to end delay simultaneously during the transmission of networks. In this paper, an Adaptable Priority-based RWA (APRWA) schemes for optical network has been demonstrated and evaluated by utilizing the performance enhancing metric such as reduction in hop count while simultaneously handling distinguishable traffic volume. The simulation result shows considerable reduction both in the blocking probability (approx. 25%) as well as in average end to end delay near around (15 msec.) in comparison to conventional RWA techniques.


Author(s):  
Bin Wang ◽  
Yousef S. Kavian

Optical networks form the foundation of the global network infrastructure; hence, the planning and design of optical networks is crucial to the operation and economics of the Internet and its ability to support critical and reliable communication services. This book chapter covers various aspects of optimal optical network design, such as wavelength-routed Wavelength Division Multiplexing (WDM) optical networks, Spectrum-Sliced Elastic (SLICE) optical networks. As background, the chapter first briefly describes optical ring networks, WDM optical networks, and SLICE optical networks, as well as basic concepts of routing and wavelength assignment and virtual topology design, survivability, and traffic grooming in optical networks. The reader is referred to additional references for details. Many optical network design problems can be formulated as sophisticated optimization problems, including (1) Routing and Wavelength Assignment (RWA) and virtual topology design problem, (2) a suite of network design problems (such as variants of traffic grooming, survivability, and impairment-aware routing), (3) various design problems aimed at reducing the overall energy consumption of optical networks for green communication, (4) various design optimization problems in SLICE networks that employ OFDM technologies. This chapter covers numerous optical network design optimization problems and solution approaches in detail and presents some recent developments and future research directions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Neeraj Mohan ◽  
Priyanka Kaushal

AbstractThe routing and wavelength assignment (RWA) schemes play an important role in all computer networks. The performance of a computer network and resource utilization largely depend on the RWA. The demand for higher bandwidth is increasing with each passing day, so more efficient RWA schemes need to be devolved to cater the increasing requirements. RWA becomes more challenging for dynamic traffic as the nature and flow of data are not known in advance. In this paper, a dynamic RWA scheme has been proposed for establishing a path in optical networks. The proposed scheme is based upon dynamic conversion sensing algorithm. It can be applied on a number of different network topologies. The proposed scheme is dynamic in nature, which is significantly useful for dynamic traffic grooming. The proposed scheme has been applied on 14 nodes National Science Foundation Network (NFSNet). Simulation results have shown that the blocking probability of this scheme is very low as compared to the existing schemes. So, the proposed dynamic RWA scheme enhances the network efficiency. It is useful for congestion hit networks. The reduced blocking probability in wavelength division multiplexing optical networks leads to better resource utilization and enhanced performance.


Author(s):  
Joaquim F. Martins-Filho ◽  
Carmelo J. A. Bastos-Filho ◽  
Daniel A. R. Chaves ◽  
Helder A. Pereira

Computational intelligence techniques have been used to solve hard problems in optical networks, such as the routing and wavelength assignment problem, the design of the physical and the logical topology of these networks, and the placement of some high cost devices along the network when it is necessary, such as regenerators and wavelength converters. In this chapter, the authors concentrate on the application of computational intelligence to solve the impairment-aware routing and wavelength assignment problem. They present a brief survey on this topic and a detailed description and results for two applications of computational intelligence, one to solve the wavelength assignment problem with an evolutionary strategy approach and the other to tackle the routing problem using ant colony optimization.


2013 ◽  
Vol 9 (2) ◽  
pp. 1049-1054
Author(s):  
Gulzar Ahmad Dar ◽  
Hardeep singh Saini

Wavelength assignment problem is one of the important problem in optical networks as on the first stage the route of the optical network is to be selected and after the route is selected then the wavelength is to be assigned to that route. In this paper we have proposed a wavelength assignment technique for the better performance of the optical network. The results have proved it better than the conventional algorithms.


In optical networks, Routing and Wavelength Assignment (RWA) problem is one of the major optimization problems. This problem can be solved by different algorithms such as Genetic Algorithm (GA), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), etc. Shuffled Frog Leaping Algorithm (SFLA) is implemented in the proposed work, to solve the RWA problem in long-haul optical networks. The goal is to use minimum number of wavelengths and to reduce the number of connection request rejections. Cost, number of wavelengths, hop count and blocking probability are the performance metrics considered in the analysis. Various wavelength assignment methods such as first fit, random, round robin, wavelength ordering and Four Wave Mixing (FWM) priority based wavelength assignment are used in the analysis using SFLA. Number of wavelengths, hop count, cost and setup time are included in the fitness function. The SFLA algorithm proposed, has been analyzed for different network loads and compared with the performance of genetic algorithm.


Author(s):  
Likhitha S

This paper presents the survey of the prominent issue in optical networks is Routing and Wavelength Assignment (RWA), due to the heavy traffic in network, there will be a need for wavelength assignment to the track in that network. The RWA problem is resolved using the approach of Genetic Algorithm and Ant Colony Optimization Algorithm, wherein up until now is noticed to be better than other optimization algorithms. By using Deep Q-Networks, a type of reinforcement learning, in optimizing the problem in selection of the routing path and wavelength assignment in an optical mesh network.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 151
Author(s):  
Michele Flammini ◽  
Gianpiero Monaco ◽  
Luca Moscardelli ◽  
Mordechai Shalom ◽  
Shmuel Zaks

All-optical networks transmit messages along lightpaths in which the signal is transmitted using the same wavelength in all the relevant links. We consider the problem of switching cost minimization in these networks. Specifically, the input to the problem under consideration is an optical network modeled by a graph G, a set of lightpaths modeled by paths on G, and an integer g termed the grooming factor. One has to assign a wavelength (modeled by a color) to every lightpath, so that every edge of the graph is used by at most g paths of the same color. A lightpath operating at some wavelength λ uses one Add/Drop multiplexer (ADM) at both endpoints and one Optical Add/Drop multiplexer (OADM) at every intermediate node, all operating at a wavelength of λ. Two lightpaths, both operating at the same wavelength λ, share the ADMs and OADMs in their common nodes. Therefore, the total switching cost due to the usage of ADMs and OADMs depends on the wavelength assignment. We consider networks of ring and path topology and a cost function that is a convex combination α·|OADMs|+(1−α)|ADMs| of the number of ADMs and the number of OADMs deployed in the network. We showed that the problem of minimizing this cost function is NP-complete for every convex combination, even in a path topology network with g=2. On the positive side, we present a polynomial-time approximation algorithm for the problem.


Sign in / Sign up

Export Citation Format

Share Document