scholarly journals MILP model for the planning of a Computerized Numerical Control Lathes Machining Plant

2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Maria Rosa Galli ◽  
Federico Kañevsky ◽  
María Agustina Franco

This work introduces the formulation and application of a MILP model to solve the problem of planning the weekly production of a machining plant using numerical control lathes to manufacture spare parts for agricultural machines. The machining plant works under a Flexible Job Shop system and it has reduced workforce with different skills to operate the various high-complexity lathes and to carry out setup operations in each machine. The developed model is based on a basic formulation for the classic problem and we introduce some flexible adjustment for the various situations that may arise from different scheduling problems. The model is applied to various scenarios; and we include a discussion of the improvements brought about by the analysis.

2019 ◽  
Vol 24 (3) ◽  
pp. 80 ◽  
Author(s):  
Prasert Sriboonchandr ◽  
Nuchsara Kriengkorakot ◽  
Preecha Kriengkorakot

This research project aims to study and develop the differential evolution (DE) for use in solving the flexible job shop scheduling problem (FJSP). The development of algorithms were evaluated to find the solution and the best answer, and this was subsequently compared to the meta-heuristics from the literature review. For FJSP, by comparing the problem group with the makespan and the mean relative errors (MREs), it was found that for small-sized Kacem problems, value adjusting with “DE/rand/1” and exponential crossover at position 2. Moreover, value adjusting with “DE/best/2” and exponential crossover at position 2 gave an MRE of 3.25. For medium-sized Brandimarte problems, value adjusting with “DE/best/2” and exponential crossover at position 2 gave a mean relative error of 7.11. For large-sized Dauzere-Peres and Paulli problems, value adjusting with “DE/best/2” and exponential crossover at position 2 gave an MRE of 4.20. From the comparison of the DE results with other methods, it was found that the MRE was lower than that found by Girish and Jawahar with the particle swarm optimization (PSO) method (7.75), which the improved DE was 7.11. For large-sized problems, it was found that the MRE was lower than that found by Warisa (1ST-DE) method (5.08), for which the improved DE was 4.20. The results further showed that basic DE and improved DE with jump search are effective methods compared to the other meta-heuristic methods. Hence, they can be used to solve the FJSP.


Sign in / Sign up

Export Citation Format

Share Document