scholarly journals Effect of Magnetic Field on Fluid Flow and Heat Transfer of a Nanofluid in a Vertical Channel with Heat Sources

2017 ◽  
Vol 7 (3) ◽  
pp. 1647-1657
Author(s):  
M. M. Keshtkar ◽  
M. Ghazanfari

This paper focuses on solving the fluid flow and heat transfer equations inside a two-dimensional square enclosure containing three hot obstacles affected by gravity and magnetic force placed on a ramp using Boltzmann method (LBM) applying multiple relaxation times (MRT). Although, the Lattice Boltzmann with MRT is a complex technique, it is a relatively new, stable, fast and high-accurate one. The main objective of this research was to numerically model the fluid flow and ultimately obtaining the velocity field, flow and temperature contour lines inside a two-dimensional enclosure. The results and their comparisons for different types of heat transfer revealed that free or forced heat transfer has a considerable impact on the heat transfer and stream lines. This can be controlled by modifying the Richardson number. It is revealed that changing the intensity of the magnetic field (Hartman number) has an appreciable effect on the heat transfer.


2021 ◽  
Vol 408 ◽  
pp. 33-49
Author(s):  
Lazarus Rundora

This article analyses the thermal decomposition in an unsteady MHD mixed convection flow of a reactive, electrically conducting Casson fluid within a vertical channel filled with a saturated porous medium and the influence of the temperature dependent properties on the flow. The fluid is assumed to be incompressible with the viscosity coefficient varying exponentially with temperature. The flow is subjected to an externally applied uniform magnetic field. The exothermic chemical kinetics inherent in the flow system give rise to heat dissipation. A technique based on a semi-discretization finite difference scheme and the shooting method is applied to solve the dimensionless governing equations. The effects of the temperature dependent viscosity, the magnetic field and other important parameters on the velocity and temperature profiles, the wall shear stress and the wall heat transfer rate are presented graphically and discussed quantitatively and qualitatively. The fluid flow model revealed flow characteristics that have profound ramifications including the increased heat transfer enhancement attributes of the reactive temperature dependent viscosity Casson fluid flow.


2020 ◽  
Vol 12 (5) ◽  
pp. 657-661
Author(s):  
Zohreh Aliannejadi

In many cases such as production of metal sheets, the behavior of fluid flow and heat transfer in the neighborhood of a hot plate is very important. The CFD simulation of fluid flow is a widespread study that reveals detail information about the fluid flow in the calculated domain. In this study, the flow and heat transfer of a specific fluid in the above area of a stretching plate is examined analytically to find the variation of skin friction and Nusselt number. For this purpose, the similarity transformations can be employed to achieve the ordinary differential equations from the governing partial differential equations. The optimal homotopy asymptotic method (OHAM) is used to solve the ordinary differential equations which is applicable in solving of nonlinear equations. The effects of magnetic field on the analytical results from solving the equations are evaluated in detail. It is found that the thickness of the flow boundary layer decreases and the thickness of the thermal boundary layer increases by increasing in the magnetic field. Moreover, the Nusselt number is lower and skin friction is higher for the higher values of the magnetic field.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Ben-Wen Li ◽  
Wei Wang ◽  
Jing-Kui Zhang

Magnetohydrodynamic (MHD, also for magnetohydrodynamics) mixed convection of electrically conducting and radiative participating fluid is studied in a differentially heated vertical annulus. The outer cylinder is stationary, and the inner cylinder is rotating at a constant angular speed around its axis. The temperature difference between the two cylindrical walls creates buoyancy force, due to the density variation. A constant axial magnetic field is also imposed to resist the fluid motion. The nonlinear integro-differential equation, which characterizes the radiation transfer, is solved by the discrete ordinates method (DOM). The MHD equations, which describe the magnetic and transport phenomena, are solved by the collocation spectral method (CSM). Detailed numerical results of heat transfer rate, velocity, and temperature fields are presented for 0≤Ha≤100, 0.1≤τL≤10, 0≤ω≤1, and 0.2≤εW≤1. The computational results reveal that the fluid flow and heat transfer are effectively suppressed by the magnetic field as expected. Substantial changes occur in flow patterns as well as in isotherms, when the optical thickness and emissivity of the walls vary in the specified ranges. However, the flow structure and the temperature distribution change slightly when the scattering albedo increases from 0 to 0.5, but a substantial change is observed when it increases to 1.


Sign in / Sign up

Export Citation Format

Share Document