scholarly journals An Overview on Extension and Limitations of Macroscopic Darcy’s Law for a Single and Multi-Phase Fluid Flow through a Porous Medium

2019 ◽  
Vol 5 (4) ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 108-117
Author(s):  
Suresh Kumar Govindarajan ◽  
Avanish Mishra ◽  
Abhishek Kumar

This manuscript primarily focuses on the constraints associated with the extended version of Darcy’s law that is used to describe the multiphase flow through a porous media; and in particular, a petroleum reservoir. This manuscript clearly brings out the basics associated with the usage of Darcy’s law, and reasons out the inapplicability of the Navier-Stokes Equation in order to describe the momentum conservation in a typical petroleum reservoir. Further, this work highlights the essence of continuum-based Darcy’s macroscopic-scale equation with that of Navier-Stokes’s microscopic-scale equation. Further, the absence of capillary forces in original Darcy’s equation and extending the same by considering the concept of ‘capillary pressure’ in order to accommodate the multi-phase flow has several critical constraints associated with it. In this manuscript, all these constraints or limitations have been posed in the form of a list of basic queries that need to be addressed or at least to be understood with clarity, when applying the multi-phase fluid flow equations associated with a petroleum reservoir. This study is limited to an oil-water two-phase system.


1974 ◽  
Vol 14 (05) ◽  
pp. 445-450 ◽  
Author(s):  
J. Geertsma

Abstract The object of this paper is to introduce an empirical, time-honored relationship between inertia coefficient - frequently misnamed "turbulence factor" - permeability, and porosity, based on a combination of experimental data, dimensional analysis, and other physical considerations. The formula can be used effectively for, among other things, the preliminary evaluation of the number of wells in a new gas field and the spacing between them. Introduction It has long been recognized that Darcy's law for single-phase fluid flow through porous media,Equation 1 in which ?=superficial velocity µ=fluid viscosity k=formation permeability p=pressure head, is approximately correct only in a specific flow regime where the velocity ? is low. Single-phase fluid flow in reservoir rocks is often characterized by conditions in favor of this linearized flow law, but important exceptions do occur. They are in particular related to the surroundings of wells producing at high flow rates such as gas wells. For the prediction or analysis of the production behavior of such wells it is necessary to apply a more general nonlinear flow law. The appropriate formula was given in 1901 by Forchheimer1; it readsEquation 2 in which ?=density a=coefficient of viscous flow resistance 1/k ß=coefficient of inertial flow resistance. This equation indicates that in single-phase fluid flow through a porous medium two forces counteract the external force simultaneously - namely, viscous and inertial forces - the latter continuously gaining importance as the velocity ? increases. For low flow rates the viscous term dominates, whereas for high flow rates the inertia term does. The upper limit of practical applicability of Darcy's law can best be specified by some "critical value" orf the dimensionless ratio.Equation 3 which has a close resemblance to the Reynolds number. Observe that ß/a has the dimension of a length. Inertia and Turbulence As the Reynolds number is commonly used as an indicator for either laminar or turbulent flow conditions, the coefficient ß is often referred to as the turbulence coefficient. However, the phenomenon we are interested in has nothing to do with turbulence. The flow regime of concern is usually fully laminar. The observed departure from Darcy's law is the result of convective accelerations and decelerations of the fluid particles on their way through the pore space. Within the flow range normally experienced in oil and gas reservoirs, including the well's surroundings, energy losses caused by actual turbulence can be safely ignored.


1996 ◽  
Vol 06 (08) ◽  
pp. 1051-1077 ◽  
Author(s):  
A. LYAGHFOURI

In this paper we study a fluid flow through a porous medium with Dirichlet boundary conditions and a general permeability. We establish the continuity of the free boundary and the uniqueness of the S3-connected solution.


1988 ◽  
Vol 190 ◽  
pp. 393-407 ◽  
Author(s):  
O. Coulaud ◽  
P. Morel ◽  
J. P. Caltagirone

This paper deals with the introduction of a nonlinear term into Darcy's equation to describe inertial effects in a porous medium. The method chosen is the numerical resolution of flow equations at a pore scale. The medium is modelled by cylinders of either equal or unequal diameters arranged in a regular pattern with a square or triangular base. For a given flow through this medium the pressure drop is evaluated numerically.The Navier-Stokes equations are discretized by the mixed finite-element method. The numerical solution is based on operator-splitting methods whose purpose is to separate the difficulties due to the nonlinear operator in the equation of motion and the necessity of taking into account the continuity equation. The associated Stokes problems are solved by a mixed formulation proposed by Glowinski & Pironneau.For Reynolds numbers lower than 1, the relationship between the global pressure gradient and the filtration velocity is linear as predicted by Darcy's law. For higher values of the Reynolds number the pressure drop is influenced by inertial effects which can be interpreted by the addition of a quadratic term in Darcy's law.On the one hand this study confirms the presence of a nonlinear term in the motion equation as experimentally predicted by several authors, and on the other hand analyses the fluid behaviour in simple media. In addition to the detailed numerical solutions, an estimation of the hydrodynamical constants in the Forchheimer equation is given in terms of porosity and the geometrical characteristics of the models studied.


Author(s):  
Mohamed Saif AlDien ◽  
Hussam M.Gubara

In this paper we discussedincompressiblefluid flow problem through free and porous areas by using Darcy's law and continuity equation, by apply the boundary conditions required to specify the solutio


2014 ◽  
Vol 62 (2) ◽  
pp. 321-329
Author(s):  
R. Wojnar

Abstract The thermal effects of a stationary Stokesian flow through an elastic micro-porous medium are compared with the entropy produced by Darcy’s flow. A micro-cellular elastic medium is considered as an approximation of the elastic porous medium. It is shown that after asymptotic two-scale analysis these two approaches, one analytical, starting from Stoke’s equation and the second phenomenological, starting from Darcy’s law give the same result. The incompressible and linearly compressible fluids are considered, and it is shown that in micro-porous systems the seepage of both types of fluids is described by the same equations.


Author(s):  
Goodarz Ahmadi ◽  
Zuleima Karpyn ◽  
Kambiz Nazridoust ◽  
Abraham S. Grader ◽  
Phillip M. Halleck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document