The ideals in (-1,1) rings

2014 ◽  
Vol 3 (1) ◽  
pp. 22
Author(s):  
Jayalakshmi Karamsi

A (-1, 1) ring \(R\) contains a maximal ideal \(I_{3}\) in the nucleus \(N\). The set of elements \(n\) in the nucleus which annihilates the associators in (-1, 1) ring \(R\), \(n(x, y, z) = 0\) and \((x, y, z)n = 0\) for all \(x, y, z \in R\) form the ideal \(I_{3}\) of \(R\). Let \(I\) be a right ideal of a 2-torsion free (-1, 1) ring \(R\) with commutators in the middle nucleus. If \(I\) is maximal and nil, then \(I\) is a two sided ideal. Also if \(I\) is minimal then it is either a two-sided ideal, or the ideal it generates is contained in the middle nucleus of \(R\) and the radical of \(R\) is contained in \(P\) for any primitive ideal \(p\) of \(R\).

1999 ◽  
Vol 51 (1) ◽  
pp. 147-163 ◽  
Author(s):  
Daniel Suárez

AbstractLet m be a point of the maximal ideal space of H∞ with nontrivial Gleason part P(m). If Lm : D → P(m) is the Hoffman map, we show that H∞ ° Lm is a closed subalgebra of H∞. We characterize the points m for which Lm is a homeomorphism in terms of interpolating sequences, and we show that in this case H∞ ° Lm coincides with H∞. Also, if Im is the ideal of functions in H∞ that identically vanish on P(m), we estimate the distance of any f ϵ H∞ to Im.


1990 ◽  
Vol 120 ◽  
pp. 77-88 ◽  
Author(s):  
Nguyen Tu Cuong

Throughout this note, A denotes a commutative local Noetherian ring with maximal ideal m and M a finitely generated A-module with dim (M) = d. Let x1, …, xd be a system of parameters (s.o.p. for short) for M and I the ideal of A generated by x1, …, xd.


Author(s):  
D. Rees

Let Q be a local domain of dimension d with maximal ideal m and let q be an m-primary ideal. Then we define the degree function dq(x) to be the multiplicity of the ideal , where x; is a non-zero element of m. The degree function was introduced by Samuel (5) in the case where q = m. The function dq(x) satisfies the simple identityThe main purpose of this paper is to obtain a formulawhere vi(x) denotes a discrete valuation centred on m (i.e. vi(x) ≥ 0 if x ∈ Q, vi(x) > 0 if x ∈ m) of the field of fractions K of Q. The valuations vi(x) are assumed to have the further property that their residue fields Ki have transcendence degree d − 1 over k = Q/m. The symbol di(q) denotes a non-negative integer associated with vi(x) and q which for fixed q is zero for all save a finite set of valuations vi(x).


1955 ◽  
Vol 7 ◽  
pp. 169-187 ◽  
Author(s):  
S. A. Jennings

Introduction. In this paper we study the (discrete) group ring Γ of a finitely generated torsion free nilpotent group over a field of characteristic zero. We show that if Δ is the ideal of Γ spanned by all elements of the form G − 1, where G ∈ , thenand the only element belonging to Δw for all w is the zero element (cf. (4.3) below).


Author(s):  
Peyman Nasehpour

In this paper, as a generalization to content algebras, we introduce amount algebras. Similar to the Anderson–Badawi [Formula: see text] conjecture, we prove that under some conditions, the formula [Formula: see text] holds for some amount [Formula: see text]-algebras [Formula: see text] and some ideals [Formula: see text] of [Formula: see text], where [Formula: see text] is the smallest positive integer [Formula: see text] that the ideal [Formula: see text] of [Formula: see text] is [Formula: see text]-absorbing. A corollary to the mentioned formula is that if, for example, [Formula: see text] is a Prüfer domain or a torsion-free valuation ring and [Formula: see text] is a radical ideal of [Formula: see text], then [Formula: see text].


2019 ◽  
Vol 62 (3) ◽  
pp. 847-859 ◽  
Author(s):  
Olgur Celikbas ◽  
Shiro Goto ◽  
Ryo Takahashi ◽  
Naoki Taniguchi

AbstractA conjecture of Huneke and Wiegand claims that, over one-dimensional commutative Noetherian local domains, the tensor product of a finitely generated, non-free, torsion-free module with its algebraic dual always has torsion. Building on a beautiful result of Corso, Huneke, Katz and Vasconcelos, we prove that the conjecture is affirmative for a large class of ideals over arbitrary one-dimensional local domains. Furthermore, we study a higher-dimensional analogue of the conjecture for integrally closed ideals over Noetherian rings that are not necessarily local. We also consider a related question on the conjecture and give an affirmative answer for first syzygies of maximal Cohen–Macaulay modules.


1996 ◽  
Vol 54 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Charles Lanski

For an associative ring R, we investigate the relation between the cardinality of the commutator [R, R], or of higher commutators such as [[R, R], [R, R]], the cardinality of the ideal it generates, and the index of the centre of R. For example, when R is a semiprime ring, any finite higher commutator generates a finite ideal, and if R is also 2-torsion free then there is a central ideal of R of finite index in R. With the same assumption on R, any infinite higher commutator T generates an ideal of cardinality at most 2cardT and there is a central ideal of R of index at most 2cardT in R.


Author(s):  
D. G. Northcott ◽  
D. Rees

1. Throughout this note Q will denote a local ring, m will denote its maximal ideal, q will denote a primary ideal belonging to m and k will denote the residue field Q/m. It will not be assumed that k is infinite, but we shall suppose that Q and k both have the same characteristic. Now let υ1, υ2 …,υd be a system of parameters contained in q, so that d = dim Q; then according to the definition given in (2) the ideal (υl υ2,…, υd) is a reduction of q if (υ1 υ2, …, υd) qm = qm+1 for at least one value of m. The use of the concept lies in the fact that such a reduction is, in a certain sense, a very good approximation to q itself; but the notion does, however, suffer from a minor disadvantage in that, if k is finite, q need not have any reductions. In §3 we shall generalize the notion of a reduction in such a way that we overcome this difficulty, and in such a way that the results concerning reductions obtained in (2) acquire some useful extensions.


2008 ◽  
Vol 73 (1) ◽  
pp. 261-275 ◽  
Author(s):  
J. Donald Monk

Recall that a subset X of an algebra A is irredundant iff x ∉ 〈X∖{x}〉 for all x ϵ X, where 〈X∖{x}) is the subalgebra generated by X∖{x}. By Zorn's lemma there is always a maximal irredundant set in an algebra. This gives rise to a natural cardinal function Irrmm(A) = min{∣X∣: X is a maximal irredundant subset of A}. The first half of this article is devoted to proving that there is an atomless Boolean algebra A of size 2ω for which Irrmm(A) = ω.A subset X of a BA A is ideal independent iff x ∉ (X∖{x}〉id for all x ϵ X, where 〈X∖{x}〉id is the ideal generated by X∖{x}. Again, by Zorn's lemma there is always a maximal ideal independent subset of any Boolean algebra. We then consider two associated functions. A spectrum functionSspect(A) = {∣X∣: X is a maximal ideal independent subset of A}and the least element of this set, smm(A). We show that many sets of infinite cardinals can appear as Sspect(A). The relationship of Smm to similar “continuum cardinals” is investigated. It is shown that it is relatively consistent that Smm/fin) < 2ω.We use the letter s here because of the relationship of ideal independence with the well-known cardinal invariant spread; see Monk [5]. Namely, sup{∣X∣: X is ideal independent in A} is the same as the spread of the Stone space Ult(A); the spread of a topological space X is the supremum of cardinalities of discrete subspaces.


1966 ◽  
Vol 18 ◽  
pp. 1183-1195 ◽  
Author(s):  
H. S. Butts ◽  
Robert W. Gilmer

This paper is concerned with the ideal theory of a commutative ringR.We sayRhas Property (α) if each primary ideal inRis a power of its (prime) radical;Ris said to have Property (δ) provided every ideal inRis an intersection of a finite number of prime power ideals. In (2, Theorem 8, p. 33) it is shown that ifDis a Noetherian integral domain with identity and if there are no ideals properly between any maximal ideal and its square, thenDis a Dedekind domain. It follows from this that ifDhas Property (α) and is Noetherian (in which caseDhas Property (δ)), thenDis Dedekind.


Sign in / Sign up

Export Citation Format

Share Document